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� A group of European experts reviewed current evidence for therapeutic efficacy of tDCS.
� Level B evidence (probable efficacy) was found for fibromyalgia, depression and craving.
� The therapeutic relevance of tDCS needs to be further explored in these and other indications.
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A group of European experts was commissioned by the European Chapter of the International Federation
of Clinical Neurophysiology to gather knowledge about the state of the art of the therapeutic use of tran-
scranial direct current stimulation (tDCS) from studies published up until September 2016, regarding
pain, Parkinson’s disease, other movement disorders, motor stroke, poststroke aphasia, multiple sclerosis,
epilepsy, consciousness disorders, Alzheimer’s disease, tinnitus, depression, schizophrenia, and craving/
addiction. The evidence-based analysis included only studies based on repeated tDCS sessions with sham
tDCS control procedure; 25 patients or more having received active treatment was required for Class I,
while a lower number of 10–24 patients was accepted for Class II studies. Current evidence does not
allow making any recommendation of Level A (definite efficacy) for any indication. Level B recommenda-
tion (probable efficacy) is proposed for: (i) anodal tDCS of the left primary motor cortex (M1) (with right
orbitofrontal cathode) in fibromyalgia; (ii) anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC)
(with right orbitofrontal cathode) in major depressive episode without drug resistance; (iii) anodal tDCS
of the right DLPFC (with left DLPFC cathode) in addiction/craving. Level C recommendation (possible effi-
cacy) is proposed for anodal tDCS of the left M1 (or contralateral to pain side, with right orbitofrontal
cathode) in chronic lower limb neuropathic pain secondary to spinal cord lesion. Conversely, Level B rec-
ommendation (probable inefficacy) is conferred on the absence of clinical effects of: (i) anodal tDCS of the
left temporal cortex (with right orbitofrontal cathode) in tinnitus; (ii) anodal tDCS of the left DLPFC (with
right orbitofrontal cathode) in drug-resistant major depressive episode. It remains to be clarified whether
the probable or possible therapeutic effects of tDCS are clinically meaningful and how to optimally per-
form tDCS in a therapeutic setting. In addition, the easy management and low cost of tDCS devices allow
at home use by the patient, but this might raise ethical and legal concerns with regard to potential misuse
or overuse. We must be careful to avoid inappropriate applications of this technique by ensuring rigorous
training of the professionals and education of the patients.
� 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
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1. Principles and mechanisms of action of transcranial direct
current stimulation

Alterations of neuroplasticity and cortical excitability are
important pathophysiological factors in many neuropsychiatric
diseases. Thus, to modify cortical activities by using non-invasive
brain stimulation (NIBS) might be a valuable therapeutic approach.
One of these NIBS approaches is transcranial direct current stimu-
lation (tDCS). Fifty years ago, it has been demonstrated in anes-
thetized rats that neural activity and cortical excitability could be
modified by the application of direct current on the sensorimotor
cortex, these effects depending on stimulation polarity and persist-
ing for hours after the end of stimulation (Bindman et al., 1964). A
few years later, it was established that a current flow sufficiently
large to achieve physiological and functional effects could also be
induced into the brain via transcranial application of such direct
currents in both healthy subjects and patients suffering from psy-
chiatric diseases (Rush and Driscoll, 1968; Dymond et al., 1975;
Lolas, 1977). However, mainly due to the lack of relevant tools to
assess its heterogeneous effects, this technique was nearly
forgotten in the following years. About 15 years ago, tDCS was
re-discovered as a tool to modulate human brain activity and its
physiological effects started to be systematically explored (Priori
et al., 1998; Nitsche and Paulus, 2000).

The primary effect of tDCS on neurons is a subthreshold shift of
resting membrane potentials towards depolarization or hyperpo-
larization, depending on current flow direction relative to axonal
orientation (Bindman et al., 1962, 1964; Purpura and McMurtry,
1965; Gorman, 1966). Delivered to the motor cortex of healthy
subjects, anodal tDCS increases the excitability of the underlying
cortex, as revealed by an increase in the amplitude of motor
evoked potential (MEP) to transcranial magnetic stimulation
(TMS), whereas cathodal tDCS decreases it (Nitsche and Paulus,
2000). Stimulation of short duration (several seconds) is sufficient
to induce these excitability changes, which however does not rel-
evantly outlast the stimulation period (Priori et al., 1998; Nitsche
and Paulus, 2000). A longer stimulation duration (several minutes)
induces excitability changes that can last for one hour or more
(Nitsche and Paulus, 2001; Nitsche et al., 2003b; Priori, 2003). As
shown by a navigated TMS study, M1 excitability changes become
steadily significant after the end of tDCS application rather than
during stimulation (Santarnecchi et al., 2014). In these studies
cited above, M1 was primarily targeted, but similar tDCS effects
were obtained for the stimulation of visual (Antal et al., 2004)
and somatosensory (Matsunaga et al., 2004) cortices.

Overall, calcium-dependent synaptic plasticity of glutamatergic
neurons is thought to play a key role in the outlasting neuroplastic
mechanism of action of tDCS, since blockade of N-methyl
D-aspartate (NMDA) receptors diminishes tDCS effects (Liebetanz
et al., 2002; Nitsche et al., 2003a). In addition, tDCS can locally
reduce gamma-aminobutyric acid (GABA) neurotransmission,
regardless of stimulation polarity (Stagg et al., 2009) and this
may also impact on glutamatergic plasticity due to the close rela-
tionship between the two neurotransmitters.

Beyond local effects, connectional effects of tDCS have also been
described. Neuronal networks respond to DC fields even more sen-
sitively than single neurons (Francis et al., 2003) and tDCS may
interfere with functional connectivity, synchronization, and oscil-
latory activities in various cortical and subcortical networks. This
has been shown for tDCS delivered to M1 (Polanía et al., 2011a,b,
2012), the prefrontal cortex (Keeser et al., 2011a), or during
slow-wave sleep (Marshall et al., 2004).

In addition, since tDCSmodulates restingmembrane potential at
the synaptic level but more generally along the whole axons, this
may result in non-synaptic effects, which might also contribute to
the long-lasting after-effects of tDCS (Ardolino et al., 2005). These
non-synaptic mechanisms of tDCS might be based on changes of
conformation and function of various axonal molecules, involved
in transmembrane ion conductance, membrane structure,
cytoskeleton, or axonal transport, when exposed to a DC field
(Jefferys, 1995).

Another important consideration in understanding tDCS effects
is that almost all tissues and cells are sensitive to electric fields
and, therefore, tDCS might also elicit changes in non-neuronal tis-
sues in the brain, including endothelial cells, lymphocytes, or glial
cells (Ruohonen and Karhu, 2012). These non-neuronal effects,
which have not been systematically explored to date, could also
be involved in the therapeutic action of tDCS. In patients with cere-
bral diseases, besides neuronal damage, other important patholog-
ical processes may exist in the axonal microenvironment, such as
inflammation. Beyond neuroinflammatory diseases, such as multi-
ple sclerosis, inflammation in the central nervous system has been
implicated in several neuropsychiatric conditions, such as in the
progression of neurodegeneration in Alzheimer’s disease (AD)
(Heneka et al., 2015). Hence, through its possible influence on
the inflammatory response, tDCS might theoretically impact on
the course of the disease. Also relevant in AD, one should note that
the conformation of beta-amyloid and other pathological proteins
can be changed when exposed to appropriate electric fields (Toschi
et al., 2009), possibly modifying their susceptibility to degradation.
In addition, DC fields can enhance axonal regeneration and neurite
outgrowth (Fehlings and Tator, 1992; Wood and Willits, 2006;
Pelletier et al., 2014) and therefore hypothetically improve func-
tional recovery. Finally, tDCS could also be useful to limit the
vicious circle of autodestructive events due to the increased Ca2+

influx resulting from excessive membrane depolarization or
intra-axonal Na+ overload in the context of ischemia or energetic
resource failure (Lefaucheur, 2009). In other words, tDCS might
be able to influence several pathological processes and patho-
genetic cascades in the central nervous system, well beyond the
sole change of neuronal excitability.

The classical influence of tDCS polarity on cortical excitability
(i.e. excitatory anodal tDCS versus inhibitory cathodal tDCS) pri-
marily concerns motor cortex stimulation, but cannot be consid-
ered as a general rule, since numerous factors can turn facilitatory
changes into inhibitory, and vice versa. The local cellular influence
of DC fields into the brain is complex, depending on the distance
and orientation of the axonal or somatodendritic axis with respect
to the electric field (Purpura and McMurtry, 1965; Gluckman et al.,
1996; Bikson et al., 2004). Axon terminals are thought to be two–
three timesmore susceptible than somas to tDCS-induced polariza-
tion, but radial or tangential current flow did not determine the
same changes in synaptic efficacy at axon terminal level, according
to stimulating electrode polarity (Rahman et al., 2013). More pre-
cisely, axonal orientation could determine whether the DC field is
excitatory or inhibitory, whereas dendritic orientation could affect
the magnitude but not the direction of DC resulting effects
(Kabakov et al., 2012). In addition, modeling studies showed that
a focal cathodal stimulation applied on the surface of a gyrus only
or preferentially activates ‘horizontal’ fibers with a directional com-
ponent parallel to the electrode surface, whereas anodal stimula-
tion rather excites fibres in the underlying cortex that are
perpendicular to the electrode surface (Manola et al., 2005;
Holsheimer et al., 2007a,b). Finally, even if DC fields induce coher-
ent depolarizing or hyperpolarizing effects on neuronal populations
with respect to fiber orientation and electrode polarity, the result-
ing physiological effect of the stimulation depends on whether
the affected network is dominantly inhibitory or excitatory.

Baseline activity of the neural networks and afferent synap-
tic inputs exposed to DC fields also have a relevant influence,
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according to the concept of metaplasticity (Abraham and Tate,
1997; Turrigiano and Nelson, 2004; Müller-Dahhaus and
Ziemann, 2015), especially following the ‘‘Bienenstock–Cooper–M
unro (BCM) model” (Bienenstock et al., 1982). This model assumes
that synaptic depression is more likely occurring when postsynap-
tic activity is high, whereas synaptic potentiation is more likely
occurring when postsynaptic activity is low. Thus, tDCS-induced
plasticity differs whether tDCS is applied in a passive, relaxed sub-
ject or in a subject performing cognitive or motor task (Antal et al.,
2007). Non-linear effects of tDCS have been described, depending
on the relationship between tDCS parameters and the responsivity
of various subtypes of neurotransmitter receptors and ion channels
(Nitsche et al., 2012), which might entail a sudden lack of propor-
tionality in stimulus–response relationships. In turn, neurotrans-
mitters, especially dopamine, can exert a dosage-dependent, but
non-linear effect on tDCS-induced plasticity (Monte-Silva et al.,
2010b).

As underlying mechanism, it has been speculated that activa-
tion of neurons not only changes their membrane potential and fir-
ing rate but also reduces membrane resistance. This loss of
resistance, or increase of conductance, may have a key importance
for tDCS effects since electric fields can cause larger changes in
transmembrane voltage in resting neurones with low membrane
conductance than in active neurones with high membrane conduc-
tance (Paulus and Rothwell, 2016). Therefore, tDCS effects depend
on complex spatial relationships between the stimulated active
target field, its projection areas, the resting surrounding structures,
the pathological alterations of transmitter systems, the medication
taken by the patients (Brunoni et al., 2013a), and individual genetic
polymorphisms (Plewnia et al., 2013).

One should also consider the major influence of stimulation
parameters, such as intensity (Batsikadze et al., 2013) and session
repetition timing (Monte-Silva et al., 2010a, 2013), which reflect
some aspects of the non-linear relationship between tDCS settings
and the biological effects produced. For example, increasing the
strength and duration of stimulation may enhance its efficacy in
given applications (e.g., Shekhawat et al., 2016), but this cannot
be considered as a general rule. In fact, increasing tDCS intensity
might also shift the direction of excitability changes, e.g., doubling
intensity from 1 mA to 2 mA can switch inhibition produced by
cathodal tDCS of M1 into excitation (Batsikadze et al., 2013). In
addition, the induced electric field spreads and goes deeper into
the brain as intensity increases, able to modify the nature of the
recruited neural networks and therefore the resulting biological
and clinical effects unexpectedly (Lefaucheur, 2012). Finally, it is
crucial to take into account that even little variations of electrode
size area, shape, or placement (montage) can strongly influence
the ‘‘diffusion” of the current and the geometry of the induced
DC fields into the brain (Miranda et al., 2009; Faria et al., 2011;
Sadleir et al., 2012; Saturnino et al., 2015). Therefore, the clinical
changes provided by tDCS may strongly vary according to many
technical and neuroanatomical considerations and relationships
(Priori, 2003; Datta et al., 2012; Parazzini et al., 2012; Brunoni
et al., 2014c; Ho et al., 2014; Galletta et al., 2015; Senço et al.,
2015). All these factors could explain the variable results provided
by tDCS trials in pathological conditions. They should be taken into
account for designing stimulation protocols and interpreting the
effects of tDCS when applied in patients with neuropsychiatric dis-
eases. Personalized therapeutic application of brain stimulation
techniques might be developed in the future, especially in the light
of new findings, which show profound interindividual variability of
cortical excitability changes in response to cortical stimulation
using tDCS (Lopez-Alonso et al., 2014, 2015; Wiethoff et al.,
2014; Strube et al., 2015), as also shown for repetitive transcranial
magnetic stimulation (rTMS) using either conventional protocols
(Sommer et al., 2002) or theta burst paradigms (Hamada et al.,
2013).

2. Clinical applications of tDCS: literature data analysis

For each potential clinical indication of tDCS, a bibliographic
search was carried out by several experts independently, using
specific keywords that will be specified at the beginning of each
section. Each expert then proceeded to a critical reading of all
selected publications in order to classify them according to the fol-
lowing criteria, derived from those proposed by the European Fed-
eration of Neurological Societies (Brainin et al., 2004). First, the
studies were classified (I–IV) according to decreasing value of evi-
dence. A Class I study is an adequately data-supported, prospective,
randomized, placebo-controlled clinical trial with masked outcome
assessment in a representative population (nP 25 patients receiv-
ing active treatment). It should include (a) randomization conceal-
ment; (b) clearly defined primary outcomes; (c) clearly defined
exclusion/inclusion criteria; (d) adequate accounting for dropouts
and crossovers with numbers sufficiently low to have minimal
potential for bias, and (e) relevant baseline characteristics substan-
tially equivalent among treatment groups or appropriate statistical
adjustment for differences. A Class II study is a randomized,
placebo-controlled trial performed with a smaller sample size
(nP 10, but < 25) or that lacks at least one of the above-listed cri-
teria a–e. Class III studies include all other controlled trials, with
less than 10 patients, or more than 10 patients, but having method-
ological limitations in the experimental design, control procedures,
or objectives. Class IV studies are uncontrolled studies, case series,
and case reports.

With the aim of establishing evidence of efficacy of a given tDCS
protocol in any specific therapeutic indication, the experts then
compared their respective classifications until they reached a con-
sensus and applied these to the levels of evidence A to C, as follows,
without considering Class IV studies. Level A (‘‘definitely effective
or ineffective”) requires at least two convincing Class I studies or
one convincing Class I study and at least two convincing Class II
studies. Level B (‘‘probably effective or ineffective”) requires one
Class I study and less that two Class II studies, or at least two con-
vincing Class II studies, or one convincing Class II study and at least
two convincing Class III studies. Level C (‘‘possibly effective or inef-
fective”) requires one convincing Class II study and less that two
Class III studies or at least two convincing Class III studies. No rec-
ommendation is made on one isolated Class I, II, or III study.

For this study, only placebo-controlled studies (using sham
tDCS, according to either crossover or parallel-arm design), based
on repeated daily sessions and including at least 10 patients receiv-
ing an ‘‘active” tDCS protocol, were retained for further analysis.
The restriction to repeated session protocols was justified by the
fact that the present work addresses the therapeutic effect of tDCS
in chronic disorders, which requires tDCS sessions to be repeated
to produce sustained effects.

Regarding grading of the ‘‘level of evidence”, we always consid-
ered recommendation for a specific indication (with the patients
having the same disease with the same type of clinical features),
using a specific stimulation protocol (with the same anode/cathode
montage, irrespective of stimulation intensity (1–2 mA) or dura-
tion and number of sessions). In addition, single-center studies
with the same indication and methodology coming from a given
research group were only considered once (according to their best
class).

For each indication, only clinical results reported in controlled
studies, published before the end of the bibliographic search
(September 1st, 2016), based on repeated tDCS sessions with sham
tDCS control procedure, and including at least 10 patients receiving
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active stimulation, were included in the evidence-based analysis. If
at least two comparable studies with similar clinical indication and
tDCS montage were published by independent research groups,
data were summarized in a table.

These tables give the number of patients who actually received
tDCS therapy, excluding dropouts. In trials with parallel arms, the
respective number of patients in the active and control groups are
indicated. In the ‘‘Results” column, the main results are usually
summarized as a function of the significance of the effect of active
tDCS versus control condition. Following this analysis, we propose
an overview of the level of evidence that can be currently recom-
mended for the therapeutic application of tDCS in a given clinical
indication, according to specified parameters of stimulation, espe-
cially regarding electrode locations and montage.

In addition, to clarify certain points (e.g., possible mechanisms
of action), to give a larger overview of the ‘‘therapeutic” potential
of the technique, or to indicate the tracks of future developments,
we were led to quote in the text and discuss various studies,
despite their small sample size or their open-label or single-
session design. These studies, however, were not taken into
account in the evidence-based analysis.
3. Pain

The literature review included studies related to ongoing
chronic pain, or acute postoperative pain, and therefore excludes
publications on the use of tDCS to relieve pain experimentally
induced in healthy subjects, reviewed elsewhere (Mylius et al.,
2012). A PubMed search [keywords: tDCS AND (pain OR migraine)]
identified 269 papers, including 62 original clinical studies cover-
ing 1426 patients. In all indications, we first screened literature
data for original clinical trials, excluding any other papers, such
as reviews, editorials, or experimental studies regarding animals
or healthy subjects. From these 62 clinical trials, 17 included less
than 10 patients. The types of pain syndrome were as follows:

– central neuropathic pain (144 patients), including central post-
stroke pain (2 studies) and medical or traumatic spinal cord
injury (7 studies);

– peripheral neuropathic pain (95 patients), including peripheral
neuropathy (1 study) and radiculopathy (1 study);

– musculoskeletal pain (excluding low back pain) (316 patients),
including fibromyalgia (11 studies), myofascial pain (3 studies),
and plantar fasciitis (2 studies);

– migraine (265 patients, 8 studies);
– orofacial pain (68 patients), including trigeminal neuralgia (2
studies), temporomandicular disorder (2 studies), and various
orofacial pain syndromes (1 study);

– low back pain (266 patients, 5 studies);
– abdominal or pelvic pain (40 patients), including inflammatory
bowel syndrome (1 study), endometriosis (1 study), and various
types of pelvic pain (3 studies);

– postoperative pain (147 patients, 4 studies);
– miscellaneous syndromes (85 patients), including phantom
limb pain (3 studies), multiple sclerosis (1 study), arthralgia
(1 study), drug toxicity (1 study), and mixed etiologies (2
studies).

Generally, the tDCS target was M1, the left dorsolateral pre-
frontal cortex (DLPFC), or the primary visual cortex (V1) for
migraine. In most studies, anodal stimulation was applied to M1
of the hemisphere contralateral to pain (in case of focal or lateral-
ized pain) or the dominant (left) hemisphere (in case of more dif-
fuse pain). M1 was usually defined as the location of the C3/C4
electrode in the International 10–20 system for EEG electrode
placement. In the largest (but negative) tDCS study to date in the
pain domain, concerning 135 patients with low back pain
(Luedtke et al., 2015), the M1 target was rather defined as the
motor hotspot of the hand determined by recording abductor digiti
minimi MEPs to single-pulse TMS. In almost all studies with the
anode intended to be placed over M1 or the left DLPFC, the cathode
was positioned over the contralateral supraorbital region. Con-
versely, in at least five studies, both M1 and DLPFC were stimulated
concomitantly or subsequently, or the cathode was positioned in
place of the anode over the intended cortical target, including
cathodal stimulation of V1 to treat migraine (Antal et al., 2011).

It has been suggested that M1 anodal stimulation may reduce
pain by activating various neural circuits present in the precentral
gyrus, which would be afferents or efferents that connect struc-
tures involved in sensory or emotional component of pain process-
ing, such as the thalamus or the DLPFC, or by facilitating
descending pain inhibitory controls (Lefaucheur, 2006; Nguyen
et al., 2011). In migraine, cathodal stimulation of V1 is thought
to decrease its oversensitivity or increased responsiveness at the
origin of headache.

In most studies, stimulation was delivered at an intensity of
2 mA with an electrode size of 35 cm2. The duration of the daily
stimulation session ranged from 10 min to 20 min, repeated for
up to 20 sessions. The effect of a single tDCS session was also
assessed in several studies, showing significant pain relief, except
in two studies (Luedtke et al., 2012; Dubois et al., 2013). In these
latter studies, both anodal and cathodal tDCS of M1 had no impact
on acute pain provoked by noxious thermal and electrical stimuli
superimposed to chronic low back pain (Luedtke et al., 2012) or
postoperative pain in lumbar spine surgery (Dubois et al., 2013).
The most commonly used protocol consisted of 20-min anodal
stimulation of M1 for five consecutive days, which may lead to sig-
nificant analgesic after-effects lasting for 2–6 weeks (Fregni et al.,
2006e; Valle et al., 2009; Antal et al., 2010; Kim et al., 2013).

A responder is usually defined as a patient experiencing pain
relief by more than 30–50% on a visual analogue scale (VAS)
(Klein et al., 2015). It is still unclear whether tDCS treatment pro-
duces different levels of relief in different types of pain. Analgesic
effects of anodal tDCS of M1 have been reported in various neuro-
pathic pain syndromes of either central or peripheral origin, but
especially located at the lower limbs (Table 1). Regarding this pain
location, analgesic effects of tDCS have been reported in one class II
study (Kim et al., 2013) and three class III studies (studies with
active group of at least 10 patients, but sham group of less than
10 patients or combining tDCS with another intervention) (Fregni
et al., 2006a; Soler et al., 2010; Yoon et al., 2014), but two class II
studies did not show any significant difference in pain intensity
reduction between active and sham condition (Wrigley et al.,
2013; Attal et al., 2016). Finally, one class II study was ambiguous,
reporting similar global pain relief after active and sham tDCS, but
more responders after active vs. sham tDCS (Souto et al., 2014)
(8/10 vs. 3/10). Therefore, we can only propose a recommendation
of Level C (possible efficacy) regarding the analgesic effect of ano-
dal tDCS of M1 applied contralaterally to the pain side or on the left
hemisphere in patients with neuropathic pain at the lower limbs,
at least when pain is secondary to spinal cord lesion. We can fur-
ther recommend performing tDCS sessions of 20-min duration
for at least 5 consecutive days, using 2 mA intensity and 35 cm2

electrode size.
In fibromyalgia, a number of publications reported positive

results in favor of anodal tDCS of the left M1 or DLPFC, but all com-
ing from a single team, regarding the application of either a classi-
cal ‘‘bipolar” montage (Fregni et al., 2006e; Roizenblatt et al., 2007;
Valle et al., 2009; Mendonca et al., 2011; Riberto et al., 2011) or a
presumably more focal, multipolar Laplacian montage (Villamar
et al., 2013; Castillo-Saavedra et al., 2016). More recently, three



Table 1
Repeated tDCS session protocols in chronic pain conditions.

Articles Number and type of patients (protocol
design)

Stimulation electrode
location

Stimulation intensity,
session duration, total
number of sessions
(protocol duration;
follow-up)

Clinical results Class

Chronic neuropathic pain of the lower limbs due to spinal cord lesion
Fregni et al.

(2006a)
17 patients with traumatic spinal cord
injury at various anatomical levels (11
active, 6 sham)

Anode: M1 (C3/C4) of the
dominant hemisphere or
contralateral to pain side.
Cathode: opposite
supraorbital region

2 mA, 20 min, 5
sessions (1 week; FU:
16 days)

Pain score reduction (mean: �58%) after
active but not sham tDCS at the end of
stimulation protocol. No significant pain
relief at 16 days. No confounding effect on
depression or anxiety

III

Soler et al.
(2010)

37 patients with spinal cord injury at
various anatomical levels and of
various origins (10 active, 9 active
+ virtual illusion 9 sham, 9 sham
+ virtual illusion)

Anode: M1 (C3/C4) of the
dominant hemisphere or
contralateral to pain side.
Cathode: opposite
supraorbital region

2 mA, 20 min, 10
sessions (2 weeks; FU:
12 weeks)

Greater pain score reduction after active
tDCS + virtual illusion, compared to the 3
other groups, up to 12 weeks after
stimulation

III

Wrigley
et al.
(2013)

10 patients with complete spinal cord
injury at thoracic level but of various
origins (crossover)

Anode: M1 (C3/C4) of the
dominant hemisphere.
Cathode: opposite
supraorbital region

2 mA, 20 min, 5
sessions (1 week; FU:
6 months)

No pain relief after active tDCS II

Souto et al.
(2014)

20 patients with lower limb pain
secondary to HTLV-1 infection (10
active, 10 sham)

Anode: left M1 (C3).
Cathode: right supraorbital
region

2 mA, 20 min, 5
sessions (1 week; no
FU)

Similar global pain relief after active and
sham tDCS, but more responders >50% pain
relief after active vs. sham tDCS (8/10 vs. 3/
10)

II

Yoon et al.
(2014)

16 patients with traumatic spinal cord
injury at various anatomical levels (10
active, 6 sham)

Anode: left M1 (C3).
Cathode: right supraorbital
region

2 mA, 20 min, 10
sessions (1 week; FU:
1 day)

Pain score reduction (mean �23%) after
active tDCS, correlated with metabolic
changes in the cerebellum, medulla,
anterior cingulate and preforntal cortices

III

Recommendation: anodal tDCS of left M1 (or contralateral to pain side) is possibly effective in lower limb pain due to spinal cord lesion (Level C)

Chronic neuropathic pain of the lower limbs due to peripheral nervous system lesion
Kim et al.

(2013)
40 patients with diabetic
polyneuropathy (20 active, 20 sham)

Anode: left M1 (C3).
Cathode: right supraorbital
region

2 mA, 20 min, 5
sessions (1 week; FU:
4 weeks)

Greater pain score reduction (mean �34%
vs. �14%) after active vs. sham tDCS, up to
4 weeks after stimulation

II

Attal et al.
(2016)

32 patients with unilateral lumbar
radiculopathy (21 active, 11 sham)

Anode: M1 (C3/C4)
contralateral to pain side.
Cathode: opposite
supraorbital region

2 mA, 30 min, 3
sessions (1 week; FU:
5 days)

No difference between active and sham
tDCS

II

No recommendation for anodal tDCS of left M1 (or contralateral to pain side) in lower limb pain due to peripheral nervous system lesion

Chronic pain related to temporomandibular disorder
Donnell

et al.
(2015)

24 patients (12 active, 12 sham) Multipolar tDCS. Two
anodes: left M1 (C3 + C5).
Two cathodes: placed
anteriorly (FC3 + FC5)

2 mA, 20 min, 5
sessions (1 week; FU:
1 month)

Increase in the size of pain-free mouth
opening one week after tDCS and in the
number of responders (>50% pain relief)
four weeks after tDCS

III

Oliveira
et al.
(2015)

32 patients (16 active, 16 sham;
combined with cervico-mandibular
exercises)

Anode: M1 (C3/C4)
contralateral to pain side.
Cathode: opposite
supraorbital region

2 mA, 20 min, 5
sessions (1 week; FU:
3 weeks)

No difference regarding effect on pain
intensity or pressure pain threshold
between active and sham tDCS

II

No recommendation for anodal tDCS of left M1 (or contralateral to pain side) in pain related to temporomandibular disorder

Fibromyalgia
Fregni et al.

(2006e)
21 patients (11 active M1, 10 sham) Anode: left M1 (C3).

Cathode: right supraorbital
region

2 mA, 20 min, 5
sessions (1 week; FU:
21 days)

Greater pain score reduction (mean: �58%
vs. �33%) and quality of life improvement
after active vs. sham tDCS, remaining
significant up to 21 days

II

Valle et al.
(2009)

28 patients (14 active M1, 14 sham) Anode: left M1 (C3).
Cathode: right supraorbital
region

2 mA, 20 min, 10
sessions (2 weeks; FU:
60 days)

Greater pain score reduction (mean: �30%
vs. �10%) and quality of life improvement
after active vs. sham tDCS, remaining
significant up to 60 days

II

Riberto
et al.
(2011)

23 patients (11 active, 12 sham;
combined with a rehabilitation
program)

Anode: left M1 (C3).
Cathode: right supraorbital
region

2 mA, 20 min, 10
sessions (10 weeks (1
session/week); no FU)

More reduced impact of pain on the quality
of life after active vs. sham tDCS, but no
differential effect on pain intensity,
depression, and anxiety

II

Fagerlund
et al.
(2015)

48 patients (24 active, 24 sham) Anode: left M1 (C3).
Cathode: right supraorbital
region

2 mA, 20 min, 5
sessions (1 week; FU:
30 days)

Greater pain score reduction (mean: �14%
vs. �2%) and less distress 30 days after
active vs. sham tDCS

II

Foerster
et al.
(2015)

12 patients (crossover) Anode: left M1 (C3).
Cathode: right supraorbital
region

2 mA, 20 min, 5
sessions (1 week; FU:
1 week)

Pain score reduction (mean: �35%) after
active but not sham tDCS, correlated to
glutamatergic transmission in the anterior
cingulate

II

Jales Junior
et al.
(2015)

20 patients (10 active, 10 sham) Anode: left M1 (C3).
Cathode: right supraorbital
region

1 mA, 20 min, 10
sessions (10 weeks (1
session/week); FU:
1 week)

Pain score reduction (mean: �40%) and
quality of life improvement after active but
not sham tDCS

II

(continued on next page)
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Table 1 (continued)

Articles Number and type of patients (protocol
design)

Stimulation electrode
location

Stimulation intensity,
session duration, total
number of sessions
(protocol duration;
follow-up)

Clinical results Class

Cummiford
et al.
(2016)

13 patients (crossover) Anode: left M1 (C3).
Cathode: right supraorbital
region

2 mA, 20 min, 5
sessions (1 week, no
FU)

No difference in pain score reduction
between active and sham tDCS but
differences in functional cerebral
connectivity changes assessed by fMRI

III

Recommendation: Anodal tDCS of left M1 is probably effective to relieve pain in fibromyalgia patients (Level B)

FU: follow-up; HTLV-1: Human T-lymphotropic virus type 1; M1: primary motor cortex.
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additional class II studies were published by independent teams,
showing a greater pain relief produced by anodal stimulation of
the left M1 compared to sham tDCS (Fagerlund et al., 2015;
Foerster et al., 2015; Jales Junior et al., 2015). Overall, these studies
reported a mean reduction of pain intensity ranging between 14%
and 58% compared to baseline at the end of the tDCS protocol (5–
10 sessions), which remained statistically significant up to one or
two months after the end of the intervention. Short-lasting effects
that were not prolonged for more than one week after 5 days of
1 mA anodal tDCS were observed in patients with focal myofascial
pain in the shoulder (Sakrajai et al., 2014). Pain relief was associ-
ated with an improvement in the quality of life in most tDCS stud-
ies of patients with fibromyalgia syndrome. Therefore, a
recommendation of Level B (probable efficacy) can be proposed
regarding the analgesic effect of anodal tDCS of the left M1 in
fibromyalgia. However, the clinical relevance of the intensity of
pain relief induced by anodal tDCS of the left M1 in this condition
is clearly debated (Fagerlund et al., 2015). A recent open-label trial
showed a clinically significant benefit (50% pain reduction associ-
ated with quality of life improvement) in 7/14 patients treated
for 6 weeks by tDCS delivered over M1 using a multipolar Lapla-
cian montage (Castillo-Saavedra et al., 2016), but these results
remain to be replicated by other teams independently. It is also
important to determine whether the analgesic effects of tDCS in
fibromyalgia syndrome can be distinguished from potential con-
comitant effects on depression and anxiety. Finally, we have no
practical guidelines on how to design a maintenance protocol for
providing long-term therapeutic effects of tDCS in this chronic
disease.

In other pain conditions, there are no replicated convincing
studies showing beneficial effects of tDCS applied to M1 or the left
DLPFC provided by independent teams and therefore, no recom-
mendation can be made. For example, there are only single positive
studies regarding the value of repeated sessions of anodal tDCS of
M1 contralateral to pain in trigeminal neuralgia (Hagenacker et al.,
2014), pain related to multiple sclerosis (Mori et al., 2010), or irri-
table bowel syndrome (Volz et al., 2016). In pain related to tem-
poromandibular disorder, one study using multipolar montage (2
cathodes and 2 anodes) reported beneficial effects (Donnell et al.,
2015), whereas no difference was found in pain relief between
active and sham condition in another study using a more classical
bipolar tDCS montage with the anode over M1 (Oliveira et al.,
2015). In chronic low back pain, the two published studies using
repeated sessions of anodal tDCS of M1 were negative, the first
one being based on a very small sample size (8 patients, therefore
not retained in the analysis) (O’Connell et al., 2013), but the other
one (Luedtke et al., 2015) including the largest series to date (135
patients) about tDCS studies in the pain domain.

With regard to other conditions, most studies had methodolog-
ical limitations, such as small sample size or single-session design.
For example, in a small group of patients, a single session of anodal
tDCS of the left DLPFC performed just after endoscopic retrograde
cholangiopancreatography was found to reduce pain intensity
and morphine consumption after intervention (Borckardt et al.,
2011). However, a subsequent study showed that a similar proto-
col (but with a different cathode placement) was unable to repli-
cate these results in a larger series of patients undergoing gastric
bypass surgery (Dubois et al., 2013). Later, in two studies, the
group of Borckardt et al. reported the efficacy of a tDCS protocol
consisting of four 20-min sessions performed from the immediate
postoperative time to the day after surgery, with the anode over a
region close to the leg area of the motor cortex (C1/C2 or Cz elec-
trode site) and the cathode over the right DLPFC (F4 electrode site)
in series of 39 patients undergoing total knee arthroplasty
(Borckardt et al., 2013) and 27 patients undergoing lumbar spine
procedure (Glaser et al., 1976). In both studies, tDCS was able to
reduce postoperative opioid requirements. These results still
remain to be replicated by another group.

In some indications, the value of the left DLPFC target was com-
pared to that of M1 in terms of analgesic efficacy. The results were
either similar (Valle et al., 2009) or in favour of M1, e.g., in patients
with fibromyalgia (Fregni et al., 2006e) or diabetic polyneuropathy
(Kim et al., 2013).

Finally, regarding migraine, the first positive results were
reported by using cathodal tDCS of V1 (Antal et al., 2011;
Wickmann et al., 2015). Other positive results were reported using
anodal tDCS of M1 in two studies. One study included more than
10 patients receiving active tDCS and showed a reduction in pain
intensity, number of attacks, and medication at the end of the
intervention and up to 8 weeks after active tDCS (Auvichayapat
et al., 2012). However, the other study was a preliminary report
of results obtained in 8 patients, in which a reduction in the inten-
sity of pain and the duration of migraine episodes was only
observed in a delayed follow-up (Dasilva et al., 2012). Therefore,
no recommendation can be made for this indication.

As a conclusion, the present level of evidence for the analgesic
effect of M1 stimulation is weaker for tDCS than for rTMS
(Lefaucheur et al., 2014). However, regarding this comparison,
the most striking point is the fact that the best level of evidence
for tDCS efficacy were found in different indications (fibromyalgia
and neuropathic pain in the lower limbs) from that of M1 rTMS,
which is known to be more prone to relieve chronic neuropathic
pain at the face or upper limbs (Lefaucheur et al., 2004, 2006).
One may speculate that tDCS and rTMS, although targeting the
same motor cortical region, do not produce pain relief through
the same mechanisms of action. This hypothesis is reinforced by
the report of a patient with chronic refractory neuropathic pain
who did not respond to high-frequency rTMS of M1, but was sub-
sequently improved by repeated sessions of anodal tDCS of M1 in
the long term (Hodaj et al., 2016). It has been suggested that rTMS
might activate similar networks as epidural motor cortex stimula-
tion (Lefaucheur et al., 2010), of which analgesic effect is obtained
according to the placement of cathode(s) over the precentral gyrus
(Holsheimer et al., 2007a,b), in contrast to tDCS for which the pre-
central electrode is classically an anode. In addition, the intensity
of rTMS and epidural stimulation is sufficient to elicit additional



J.-P. Lefaucheur et al. / Clinical Neurophysiology 128 (2017) 56–92 63
action potentials in the activated circuits, whereas tDCS is assumed
to modulate spontaneous firing (Lefaucheur, 2012). Thus, different
mechanisms of action might subserve different indications for
high-frequency rTMS and anodal tDCS of M1 in the pain domain.
Only one sham-controlled study directly compared the analgesic
efficacy of these two approaches (Attal et al., 2016). This study
included patients with neuropathic pain due to lumbosacral
radiculopathy and showed that high-frequency rTMS, but not ano-
dal tDCS of M1 contralateral to the painful area (three daily ses-
sions) was superior to sham stimulation. This result is surprising,
since, as mentioned above, relief of neuropathic pain in the lower
limbs was more frequently reported after tDCS than after rTMS
in the literature. Finally, as an alternative in the treatment of
refractory chronic pain, tDCS offers various advantages compared
to rTMS, e.g., a low-cost equipment that can be used at home, as
shown in a recent case report of long-term treatment of myofascial
pain using a tDCS protocol controlled by tele-medicine (Pérez-
Borrego et al., 2014). Sham-controlled protocols of repeated tDCS
sessions performed at home by the patients themselves are cur-
rently under investigation (O’Neill et al., 2015).
4. Parkinson’s disease

In advanced Parkinson’s disease (PD), the emergence of fluctu-
ations, dyskinesias, difficulties with gait and postural control, cog-
nitive impairment and non-motor symptoms refractory to
conventional therapy poses therapeutic challenges. The success
of deep brain stimulation (DBS) and advances in the understanding
of the pathophysiology of PD have raised interest in NIBS tech-
niques as alternative therapeutic tool. The rationale for the use of
NIBS draws from the concept that reversing abnormalities in brain
activity and physiology thought to cause the clinical deficits may
restore normal functioning. Currently the best evidence in support
of this concept comes from DBS, which improves motor deficits,
and modulates brain activity and motor cortex physiology, though
whether a causal interaction exists remains largely undetermined.
At present, tDCS offers a safe, easy-applicable method of NIBS, and
there are now several published tDCS trials aimed at improving
various clinical aspects in the domain of PD (Benninger and
Hallett, 2015; Elsner et al., 2016b).

Actually, a PubMed search (keywords: tDCS AND Parkinson’s
disease) identified 72 papers, including 15 original clinical studies
and 225 patients. One paper was a single case report (Kaski et al.,
2014a), whereas 10–25 patients were included in the other studies.
The objectives of these studies perfomed in parkinsonian patients
were various and can be summarized as follows:

– to study the effect of tDCS preconditioning (priming protocol,
1 mA for 10 min) on the ability of a subsequent low-frequency
rTMS protocol (1 Hz, 900 pulses) delivered over M1 to improve
motor performance, motor control, or gain kinematics (Grüner
et al., 2010; Eggers et al., 2012; Von Papen et al., 2014);

– to study the effect of anodal tDCS of the left DLPFC on working
memory (Boggio et al., 2006) or verbal fluency (Pereira et al.,
2013);

– to study the effect of anodal tDCS of the left or right DLFPC on
executive or cognitive functions (Doruk et al., 2014; Manenti
et al., 2016);

– to study the effect of anodal tDCS of the left and right DLFPC on
walking abilities (Manenti et al., 2014);

– to study the effect of anodal tDCS over various motor regions on
gait and motor performance (Verheyden et al., 2013; Kaski
et al., 2014a,b; Valentino et al., 2014; Costa-Ribeiro et al.,
2016; Ferrucci et al., 2016), optionally combined with prefrontal
stimulation (Benninger et al., 2010).
4.1. tDCS effects on motor symptoms

In the literature, there are only three sham-controlled therapeu-
tic tDCS trials based on repeated sessions of tDCS delivered over
the motor cortex and including at least 10 PD patients in the active
tDCS condition: two were parallel-designed and the other
crossover-designed randomized controlled trials (RCTs) (Table 2).

In one parallel-designed RCT (Benninger et al., 2010), the safety
and efficacy of anodal tDCS applied to the motor and prefrontal
cortices in 8 sessions over 2.5 weeks were investigated. TDCS
exerted significantly beneficial effects on gait (10 m walking) and
bradykinesia (assessed by a timed testing of sequential hand and
arm movements) for the follow-up period of 3 months. However,
the observed effects were small and still need to be confirmed in
a larger study. Conversely, changes in the motor score of the Uni-
fied Parkinson’s Disease Rating Scale (UPDRS), reaction time, phys-
ical and mental well-being, and self-assessed mobility did not
differ between tDCS and sham intervention.

In a crossover RCT (Valentino et al., 2014), a protocol of 5 ses-
sions of anodal tDCS of M1 was found to provide a beneficial effect
on gait, freezing of gait, and motor performance in 10 parkinsonian
patients. These effects lasted for the follow-up period of 1 month.
The long-lasting persistence of effects in the both RCTs points
out to plasticity phenomena. In the context of PD, it is important
to note that dopamine, in a complex balance between D1 and D2
receptor mediation, exerts dose-dependent consolidation-
enhancing effects on tDCS-induced changes of excitability and
NMDA receptor-mediated neuroplasticity in the human motor cor-
tex (Nitsche et al., 2006, 2009a; Fresnoza et al., 2014). In a recent
study based on a small sample of 9 patients, anodal tDCS applied
bilaterally over M1 for five consecutive days was found to improve
levodopa-induced dyskinesias, but not other motor symptoms
(Ferrucci et al., 2016). Anodal cerebellar tDCS provided the same
results as M1 tDCS.

In addition, beyond the proper effects of tDCS on motor control
and cortical excitability, there is increasing evidence pointing to
the enhancement of motor learning and long-term retention as
the rationale for combining tDCS protocol with rehabilitative inter-
vention in PD patients (Benninger et al., 2010). This approach is
supported by data obtained in healthy subjects (Nitsche et al.,
2003c; Reis et al., 2009) and it was first applied to promote motor
recovery in stroke patients (Hummel et al., 2005). In PD, this was
the subject of two recent studies. They showed prolonged
improvement in gait or motor abilities following anodal tDCS over
the lower limb motor/supplementary motor area combined with
cueing gait training (Costa-Ribeiro et al., 2016a,b) or anodal tDCS
over the DLPFC contralateral to the most affected body side com-
bined with physical therapy (Manenti et al., 2016).

Acute effects of single tDCS sessions have also been reported in
PD patients. In a crossover study, a single session of anodal tDCS of
left M1, but not of cathodal tDCS of left M1 or anodal tDCS of left
DLPFC, was found to improve motor function (UPDRS score and
simple reaction time) (Fregni et al., 2006d). In another crossover
study, a single session of anodal tDCS of M1 of the dominant hemi-
sphere reduced the time to walk 10 m, but had no effects on other
gait measures (Verheyden et al., 2013). Gait velocity was also
found to be improved after a single session of anodal tDCS of a
region roughly corresponding to lower limb motor region with
the cathode positioned at the inion (Kaski et al., 2014a,b).
4.2. tDCS effects on nonmotor symptoms

Cognitive impairment is prevalent in advanced PD and a major
cause of disability and institutionalization, but fronto-executive
dysfunction may manifest early. In a crossover study including



Table 2
Repeated tDCS session protocols in motor symptoms of Parkinson’s disease.

Articles Number and type of
patients (protocol
design)

Stimulation electrode
location

Stimulation intensity,
session duration, total
number of sessions
(protocol duration; follow-
up)

Clinical results Class

Benninger et al.
(2010)

25 patients (HY 2–4)
(13 active, 12 sham)

Anode: both (pre)motor and
prefrontal cortices.
Cathodes: mastoids

2 mA, 20 min, 8 sessions
(2.5 weeks; FU: 3 months)

Improvement of gait in off-condition for a short
time and of bradykinesia in on- and off-
conditions, persisting at least 3 months after the
stimulation period

II

Valentino et al.
(2014)

10 patients (HY 2.5–4)
(crossover)

Anode: M1 (leg area)
contralateral to dominant
lower limb. Cathode:
opposite supraorbital region

2 mA, 20 min, 5 sessions
(1 week; FU: 1 month)

Improvement of motor performance (motor
UPDRS) and gait, with reduction in number and
duration of freezing episodes, persisting at least
4 weeks after the stimulation period

III

Costa-Ribeiro et al.
(2016a,b)

22 patients (HY 1–3)
(11 active, 11 sham),
combined with cueing
gait training

Anode: 2 cm anterior to Cz.
Cathode: supraorbital region
opposite to the most
affected side

2 mA, 20 min, 10 sessions
(3 weeks; FU: 1 month)

Improvement of motor performance and gait due
to gait training was similar between the active
and sham tDCS groups, but the clinical gain and a
decrease in motor threshold lasted one month
only in the active group

II

No recommendation for anodal tDCS of the motor cortex in motor symptoms of Parkinson’s disease.
FU: follow-up; HY: Hoehn and Yahr disease stage; M1: primary motor cortex; UPDRS: Unified Parkinson’s Disease Rating Scale.
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18 PD patients, a single session of anodal tDCS of left DLPFC, but
not of left M1, improved performance in a working memory task,
only at the stimulation intensity of 2 mA (Boggio et al., 2006). In
another crossover study including 16 PD patients, a single session
of anodal tDCS improved verbal fluency, associated with large-
scale functional changes between connected brain areas, more sig-
nificantly when the stimulation was applied to the left DLPFC than
to the left temporo-parietal cortex (TPC) (Pereira et al., 2013).
Finally, in a sham-controlled study of 20 PD patients with
parallel-arm design, a protocol of 10 sessions of anodal tDCS deliv-
ered over the DLPFC contralateral to the most affected body side
during a physical therapy program was found to increase cognitive
performance and verbal fluency only in the active arm group
(Manenti et al., 2016). The cognitive improvement was signifi-
cantly lasting at 3-month follow-up, while an improvement in
motor abilities and a reduction of depressive symptoms was simi-
larly observed in both active and sham groups at the end of the
treatment.

4.3. Conclusion

The currently published studies suggest a potential impact of
anodal tDCS of M1 on gait and motor symptoms in PD patients,
but do not provide sufficient evidence for a recommendation,
because of heterogeneity in the targeted motor area or the out-
come measures, for example. The clinical effects reported so far
appeared to be negligible regarding functional independence and
quality of life. Other results concerned small series of patients
and mostly single-session protocols with short-lasting effects. Var-
ious montages and designed cortical targets remain to be investi-
gated in larger studies. Combined approaches of tDCS with a
rehabilitative intervention or priming strategies may potentiate
the therapeutic efficacy (Benninger and Hallett, 2015). There is also
a need to evaluate the value of tDCS protocols to act on nonmotor
parkinsonian symptoms at a clinically meaningful level.

5. Other movement disorders

Actually, published tDCS studies on movement disorders other
than PD are rare and have been recently reviewed (Ferrucci et al.,
2016). There are only two sham-controlled crossover studies using
repeated tDCS sessions. The first study concerned 8 patients with
essential tremor who completed a tDCS protocol for 10 days with
two cathodes placed over both cerebellar hemispheres and two
anodes positioned over both prefrontal areas (Gironell et al.,
2014). In this study, any short- or long-lasting clinical benefits in
any outcome measure was observed after active stimulation com-
pared to the sham condition. The second study was a case report of
2 patients with Tourette’s syndrome who benefitted from a 5-day
protocol of cathodal tDCS of left M1 (with the anode over the right
deltoid muscle) (Mrakic-Sposta et al., 2008). Active stimulation sig-
nificantly decreased the number of motor and phonic tics in both
patients at the end of the 5-day treatment.

It is for dystonia that there would be more relevance to find
tDCS studies. Indeed, dystonia is a heterogeneous disorder charac-
terized by impaired motor control related to a loss of inhibition,
sensory dysfunction, and alterations of synaptic plasticity leading
to abnormal sensorimotor integration (Quartarone and Hallett,
2013). Clinical evidence support efficacy of DBS, whereas beneficial
effects of NIBS, if any, are modest and short-lasting (Benninger
et al., 2015; Cho and Hallett, 2016). Regarding tDCS and dystonia,
a PubMed search (keywords: tDCS AND dystonia) identified 32
papers, including 15 original clinical studies and 147 patients.
Thus, the amount of published data is not far from that of PD. How-
ever, most studies are case reports or small case series. Approxi-
mately only half of the studies included at least 10 patients. In
addition, the studies were often issued from the same group, for
specific clinical conditions, which were:

– musician’s dystonia (77 patients; 7 studies);
– writer’s cramp (35 patients; 4 studies);
– cervical dystonia (2 patients; 2 studies);
– pediatric cases of primary and secondary generalized dystonia
or hemidystonia, including secondary to cerebral palsy (33
patients; 3 studies).

Regarding studies using repeated tDCS sessions, we found:

– a series of 30 musicians with right-hand primary focal dystonia
who received 10 sessions of tDCS delivered over the both M1
regions (C3/C4, the cathode being on the left side), combined
with a rehabilitative intervention (sensory motor retuning ther-
apy) for 2 weeks and who experienced a more significant
improvement of their dystonia severity score after active than
sham tDCS (Rosset-Llobet et al., 2015). Interestingly, another
research group reported that single-session protocols of anodal
or cathodal tDCS of left M1 (with right supraorbital cathode)
failed to produce any beneficial effects in patients with musi-
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cian’s dystonia (Buttkus et al., 2010, 2011), whereas simultane-
ous bihemispheric (‘‘dual”) stimulation of M1 (left cathode
+ right anode) improved the rhythmic accuracy of sequential
finger movements in such patients, up to 4 days after interven-
tion (Furuya et al., 2014);

– a series of 8 patients with writer’s cramp who underwent 3
tDCS sessions in one week, with the cathode placed over the
TMS motor hotspot and the anode on the contralateral mastoid
(Benninger et al., 2011). The stimulation did not produce bene-
ficial effects on disability and severity of dystonic symptoms
and failed to restore normal kinematics of handwriting and cor-
tical inhibition. Sham-stimulated patients even reported a sig-
nificantly better improvement contrasting with the subjective
worsening with tDCS in some patients, which remained unex-
plained and constituted the reason for the premature termina-
tion of the study;

– the case of one patient with cervical dystonia who was not
improved by five consecutive daily sessions of tDCS with the
cathode at C4 and the anode at P3, according to the interna-
tional 10/20 EEG electrode system (Angelakis et al., 2013);

– another case of one patient with cervical dystonia who benefit-
ted on dystonia symptoms and quality of life from a sequential
protocol of anodal tDCS of the both cerebellar hemispheres and
the right M1 performed during 20 sessions over 12 weeks after
a botulinum toxin injection (Bradnam et al., 2014);

– and finally a series of 9 young people with mainly generalized
dystonia secondary to cerebral palsy who did not respond to a
clinically meaningful extent to a 5-day protocol of either catho-
dal or anodal tDCS of M1 (2 mA, 9 min per day) (Bhanpuri et al.,
2015).

All these studies are not-replicated studies, based on small sam-
ple sizes, excepting the study published by Rosset-Llobet et al.
(2015). Therefore, no recommendation can be drawn from these
results regarding the efficacy of any tDCS protocol on dystonia
symptoms.
6. Motor stroke

The recovery of motor function after stroke is one of the most
important issues addressed in neurorehabilitation medicine. The
rationale of cortical stimulation following stroke is to promote
adaptive neuroplasticity, taking place in the perilesional region
as well as in the homologous area of the contralesional hemi-
sphere. Functional magnetic resonance imaging (fMRI) studies
have revealed an initial decrease in ipsilesional activity in the first
3 days after stroke followed by an increase in activity in homolo-
gous contralesional as well as perilesional areas after 10 days
(Grefkes and Ward, 2014). Contralesional activity returns close to
normal values when motor function improves but remains ele-
vated when significant clinical impairment persists. The initially
reduced ipsilesional activity is associated with a decreased ipsile-
sional corticospinal excitability as indicated by increased motor
threshold and decreased MEP amplitude when tested by TMS. This
leads to a contralesional increase in corticospinal excitability due
to diminished interhemispheric inhibition from ipsilesional to con-
tralesional M1, which in turn increases interhemispheric inhibition
from contralesional to ipsilesional M1 and further decreases ipsile-
sional corticospinal excitability (Traversa et al., 1998; Murase et al.,
2004). Thus, tDCS therapy aims at either increasing ipsilesional M1
excitability or decreasing contralesional M1 excitability, or both at
the same time via bihemispheric tDCS. Most tDCS studies targeted
the hand/arm M1 representation, but some studies specifically
addressed post-stroke swallowing or lower limb dysfunction. Stud-
ies differed in stimulation parameters (tDCS intensity, polarity and
duration), in the number of sessions applied, the duration of
follow-up, and the tasks performed for outcome evaluation.
Finally, tDCS can be used alone or combined in different sequence
order with physical or other non-pharmacological rehabilitation
therapies.

A PubMed research (keywords: tDCS AND motor AND stroke)
identified 261 papers, including 68 original clinical trials and
1,032 patients. The majority of these studies targeted upper limb
function. As for the other indications, we excluded from the analy-
sis all studies that do not have a control condition using sham
tDCS, a sample size with at least 10 patients receiving active tDCS,
and a design consisting of repeated daily sessions. According to
these criteria, we retained only 7 studies for making recommenda-
tions on the value of tDCS to improve post-stroke motor dysfunc-
tion (Table 3).

Two large RCTs, fulfilling the criteria for class I, did not show
any significant clinical effect of tDCS on motor function recovery
(Hesse et al., 2011; Rossi et al., 2013). Presumably, in one study
(Hesse et al., 2011), this was due to the inclusion of patients with
cortical stroke and severe motor weakness, who are less suscepti-
ble to improve after cortical stimulation (Ameli et al., 2009). The
second negative study (Rossi et al., 2013) concerned the immediate
acute phase (two days after stroke) by applying anodal tDCS to the
ipsilesional M1, whose dramatic reduction in activity in this period
(Grefkes and Ward, 2014) may likely not be overcome by tDCS.

The other controlled studies retained in our analysis were of
class II (Table 3), reporting either positive or negative results in
terms of efficacy of tDCS on motor recovery or quality of life. There
is heterogeneity in clinical profile of the population, tDCS method-
ology, or outcome measures, precluding robust conclusions. For
example, regarding anodal tDCS of ipsilesional M1 in chronic
stroke patients, leg area was targeted and walking measures were
performed in one negative study (Geroin et al., 2011), while hand
area was targeted in two positive studies, one showing improve-
ment in quality of life but not in motor performance (Viana et al.,
2014) and the other showing improvement in some motor tests
but not all (Allman et al., 2016). Overall, the level of evidence
remains insufficient to make any recommendation regarding either
anodal tDCS of ipsilesional M1 or cathodal tDCS of contralesional
M1 in populations of patients at various time after stroke.

A previous meta-analysis of anodal tDCS of ipsilesional M1 in
chronic stroke patients, including trials with smaller sample sizes
and based on single tDCS sessions, showed small to moderate
effect sizes for the improvement of upper limb function when com-
pared with baseline or sham tDCS, respectively (Butler et al., 2013).
The same year, another meta-analysis (Elsner et al., 2013b) includ-
ing all types of tDCS protocols, found evidence of an effect in favour
of tDCS on activities of daily living (primary outcome) at follow-up
but not at the end of the intervention phase in stroke patients. The
reverse was observed for upper limb motor function, but evidence
was of low quality when only studies with low risk of bias were
considered. This meta-analysis was updated three years later
(Elsner et al., 2016c): the moderate beneficial effect on activities
of daily living was found both at the end of the intervention and
at follow-up, whereas no more evidence for upper limb motor
function improvement could be observed. Another meta-analysis
including multiple- and single-session studies combining tDCS
and motor training of the upper extremities showed moderate
long-term effects on motor learning after either anodal tDCS of
ipsilesional M1, cathodal tDCS of contralesional M1, or bihemi-
spheric stimulation of M1 in the postacute or chronic stage of post-
stroke recovery (Kang et al., 2016). A fourth meta-analysis,
including only RCTs with a multiple-session design, showed only
small non-significant beneficial effects of therapeutic strategies
combining tDCS and rehabilitation programs for poststroke upper
extremity recovery (Tedesco Triccas et al., 2016). A fifth



Table 3
Repeated tDCS session protocols in motor stroke.

Articles Number and type of
patients (protocol design)

Stimulation electrode
location

Stimulation intensity,
session duration, total
number of sessions
(protocol duration;
follow-up)

Clinical results Class

Anodal stimulation of the ipsilesional motor cortex
Acute phase
Rossi et al. (2013) 50 patients (2 days after

stroke) (25 active, 25 sham)
Anode: ipsilesional
M1 (C3/C4). Cathode:
opposite supraorbital
region

2 mA, 20 min, 5 sessions
(1 week; FU: 3 months)

No difference in motor or daily living
changes (FMA, NIHSS, mRS, BI) after active
vs. sham tDCS at the end of the intervention
and 3 months later

I

Sattler et al. (2015) 20 patients (1–14 days after
stroke) (10 active, 10 sham;
combined with 5 Hz radial
nerve stimulation)

Anode: ipsilesional
M1 (TMS hotspot).
Cathode: opposite
supraorbital region

1.2 mA, 13 min, 5
sessions (1 week; FU:
1 month)

Improvement of upper limb motor
performance (JHFT, but not FMA) after
anodal vs. sham tDCS at 2 and 4 weeks after
intervention

II

Postacute phase
Hesse et al. (2011) 56 patients (3–8 weeks

after stroke) (28 active, 28
sham; combined with
robot-assisted arm motor
training)

Anode: ipsilesional
M1 (C3/C4). Cathode:
opposite supraorbital
region

2 mA, 20 min, 30
sessions (6 weeks; FU:
3 months)

No difference in motor or daily living
changes (FMA, BBT, MRC, mAS, BI) after
active vs. sham tDCS at the end of the
intervention and 3 months later

I

Khedr et al. (2013) 27 patients (1–4 weeks
after stroke) (14 active, 13
sham; combined with
conventional physical
therapy)

Anode: ipsilesional
M1. Cathode:
opposite supraorbital
region

2 mA, 25 min, 6 sessions
(1 week; FU: 3 months)

Improvement of four limb motor
perfomance and daily living activities
(OMCASS, BI), correlated with MT reduction
after active vs. sham tDCS at the end of the
intervention and 3 months later

II

Chang et al. (2015) 24 patients (1–4 weeks
after stroke) (12 active, 12
sham; combined with robot
therapy for upper limb)

Anode: ipsilesional
M1 (leg area, TMS
hotspot). Cathode:
opposite supraorbital
region

2 mA, 10 min, 10
sessions (2 weeks; FU:
1 day)

Improvement of lower limb motor
performance (FMA), MEP facilitation, but no
effect on gait after anodal vs. sham tDCS

II

Chronic phase
Geroin et al. (2011) 20 patients (14–34 months

after stroke) (10 active, 10
sham; combined with
robot-assisted gait training)

Anode: ipsilesional
M1 (leg area).
Cathode: opposite
supraorbital region

1.5 mA, 7 min, 10
sessions (2 weeks; FU:
2 weeks)

No difference in walking tests after active vs.
sham tDCS

II

Viana et al. (2014) 20 patients (14–52 months
after stroke) (10 active, 10
sham; combined with
virtual reality therapy)

Anode: ipsilesional
M1 (C3/C4). Cathode:
opposite supraorbital
region

2 mA, 13 min, 15
sessions (5 weeks; no
FU)

Improvement of quality of life (SSQOL) but
no difference in motor performance (FMA,
WFMT, mAS) after active vs. sham tDCS

II

Allman et al. (2016) 24 patients (6–141 months
after stroke) (11 active, 13
sham; combined with
motor training)

Anode: ipsilesional
M1 (C3). Cathode:
opposite supraorbital
region

1 mA, 20 min, 9 sessions
(2 weeks; FU: 3 months)

Improvement of motor performance on
ARAT andWFMT but not on upper extremity
FMA after active vs. sham tDCS at the end of
the intervention and 3 months later

II

No recommendation for anodal tDCS of the ipsilesional motor cortex in motor stroke

Cathodal stimulation of the contralesional motor cortex
Postacute phase
Hesse et al. (2011) 57 patients (3–8 weeks

after stroke) (29 active, 28
sham; combined with
robot-assisted arm motor
training)

Anode: opposite
supraorbital region.
Cathode:
contralesional M1
(C3/C4)

2 mA, 20 min, 30
sessions (6 weeks; FU:
3 months)

No difference in motor or daily living
changes (FMA, BBT, MRC, mAS, BI) after
active vs. sham tDCS at the end of the
intervention and 3 months later

I

Khedr et al. (2013) 26 patients (1–4 weeks
after stroke) (13 active, 13
sham; combined with
conventional physical
therapy)

Anode: opposite
supraorbital region.
Cathode:
contralesional M1

2 mA, 25 min, 6 sessions
(1 week; FU: 3 months)

Improvement of four limb motor
perfomance and daily living activities
(OMCASS, BI), correlated with MT reduction
after active vs. sham tDCS at the end of the
intervention and 3 months later

II

No recommendation for cathodal tDCS of the contralesional motor cortex in motor stroke.
ARAT: action research arm test; BBT: box and block test; BI: Barthel Index; FMA: Fugl-Meyer assessment; FU: follow-up; JHFT: Jebsen hand function test; mAS: modified
Ashworth scale; MEP: motor evoked potential; MRC: Medical Research Council score; mRS: modified Rankin scale; NIHSS: National Institute of Health stroke score; OMCASS:
Orgogozo’s MCA scale; SSQOL: stroke specific quality of life scale; TMS: transcranial magnetic stimulation; WFMT: Wolf Motor Function Test.
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meta-analysis determined whether the outcome of tDCS of M1 in
poststroke motor recovery has a dose–response relationship
(Chhatbar et al., 2016). This study included 8 sham-controlled RCTs
based on repeated tDCS sessions (P5) including assessment on the
Fugl-Meyer Assessment (FMA) scale, concerning a total of 213
stroke patients. This study showed a moderate effect of active
stimulation on FMA scores with greater effects of bihemispheric
stimulation and in chronic stroke patients. It further revealed a
positive dose–response relationship for current and charge
density as well as a negative dose–response relationship for elec-
trode size.

Additionally, some results obtained with single tDCS sessions
are worth being discussed, although they should be considered
as ‘‘proof-of-concept” studies, based on immediate or short-
lasting effects rather than ‘‘therapeutical trials” aimed at producing
sustained effects, which could be clinically relevant. In chronic
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stroke, several single-session studies showed beneficial effects of
contralesional cathodal stimulation of M1 on motor performance
of the paretic hand, e.g., assessed by the Jebsen–Taylor hand func-
tion test (JTT) (10 patients investigated 1–16 months after stroke in
Mahmoudi et al., 2011) or a finger movement task (12 patients
investigated 12–64 months after stroke in Zimerman et al.,
2012). Short-lasting motor performance improvement was also
reported after a single session of ipsilesional anodal stimulation
of M1, e.g., regarding pinch force and motor response time of the
paretic hand (11 patients investigated 18–107 months after stroke
in Hummel et al., 2006; 13 patients investigated 18–70 months
after stroke in Stagg et al., 2012). One study showed that tDCS
effects were greater after ipsilesional anodal stimulation of M1
than contralesional cathodal stimulation (Stagg et al., 2012).

A single anodal tDCS session targeted over the leg area of ipsile-
sional M1 was also found to improve gait and lower limb strength
in a series of 11 patients in the postacute phase (1–3 months after
stroke) (Sohn et al., 2013). The same montage was used in a
multiple-session study, showing some improvement of motor
function in the lower limbs, but not of gait performance (Chang
et al., 2015). Another study, still using the same tDCS protocol
but combined with robot-assisted gait training for 10 sessions in
patients with chronic stroke (14–34 months after stroke) did not
confirm the additional value of anodal tDCS targeted over the leg
area of ipsilesional M1 to improve walking abilities (Geroin et al.,
2011). The absence of additional value of tDCS when combined
with robot therapy was confirmed for upper extremity rehabilita-
tion, evaluated on FMA scale in a recent study (Triccas et al.,
2015). In this study, 18 sessions of ipsilesional anodal tDCS were
performed over 8 weeks in a series of 22 patients either in the
postacute (2–3 months after stroke) or chronic phase (9–
90 months after stroke). Both active and sham tDCS groups
included only 6 postacute stroke patients and 5 chronic stroke
patients. Because of this heterogeneity and small sample size, the
study was not entered into the analysis for grading. These negative
results probably revealed a ceiling effect of very thorough rehabil-
itation programs. Conversely, tDCS was found to be more beneficial
than basic functional training for improving upper and lower limb
functions in a parallel-arm study of 20 chronic stroke patients
receiving ipsilesional anodal tDCS, 5 days a week for 4 weeks
(Cha et al., 2014).

All above cited results were obtained with the ‘‘return” (‘‘refer-
ence”) tDCS electrode placed over the contralateral supraorbital
region. Conversely, some studies also considered bihemispheric
stimulation of M1, with the cathode over the contralesional M1
region and the anode over the lesioned M1. One single-session
study showed that bilateral montage was as efficacious as unilat-
eral cathodal or anodal stimulation (Mahmoudi et al., 2011). Also
in proof-of-concept studies based on a single session, one group
showed the value of bihemispheric M1 tDCS protocol combined
with a visuomotor skill learning task (Lefebvre et al., 2012) or pre-
cision grip and dexterity tests (Lefebvre et al., 2014) to enhance
motor rehabilitation in chronic stroke patients. However, another
study did not confirm the value of a single bihemispheric tDCS ses-
sion on walking abilities in a small series of chronic stroke patients
(van Asseldonk and Boonstra, 2016). To our knowledge, there is
only one study reporting the clinical impact of a 5-day protocol
of bihemispheric M1 tDCS, combined with 60-min occupational
therapy, in a series of 20 patients with chronic stroke (5–
81 months after stroke) (Lindenberg et al., 2010). In this parallel-
arm study, an improvement of motor performance on FMA and
Wolf motor function test (WMFT), lasting for one week beyond
the time of stimulation, was observed in the 10 patients having
received active tDCS. However, in the absence of replicated
bihemispheric tDCS studies including repeated sessions, no recom-
mendation can be proposed for this approach. In addition, the
superiority of unilateral anodal and cathodal M1 stimulation over
bilateral M1 stimulation was only shown regarding the effect of
tDCS on motor corticospinal excitability in healthy volunteers or
speeding reaction time in chronic stroke patients (O’Shea et al.,
2014). The potential impact of bihemispheric M1 tDCS on motor
rehabilitation may depend on the microstructural and functional
status of transcallosal motor tracts (Lindenberg et al., 2016). How-
ever, the concept of a bihemispheric stimulation leading to
enhance the excitability of the lesioned motor cortex by the anode
and to reduce the excitability of the contralesional hemisphere by
the cathode remains to be demonstrated. In particular, a ‘‘titration”
study is needed for bihemispheric versus monohemispheric stimu-
lation of M1 (Batsikadze et al., 2013), to determine the respective
impact on motor cortex excitability of these two montages, accord-
ing to the resulting changes in MEP size, for example.

In the present work, we have differentiated the results accord-
ing to the time window following stroke, which is known to be a
crucial parameter in the focal changes of brain excitability and
plasticity. The time of the intervention after stroke onset has very
likely significant impact on the efficacy of a given tDCS paradigm.
In the acute phase of stroke, a beneficial effect of cathodal tDCS to
reduce the inhibitory action exerted by the contralesional M1 onto
the lesioned hemisphere should be expected. However, the adap-
tive role of the contralesional hemisphere in stroke recovery
remains controversial (Di Pino et al., 2014). As mentioned above,
the classical concept of interhemispheric competitive rivalry sup-
ports the objective of decreasing the excitability of the contrale-
sional motor cortex and its ability to further reduce the neural
activities in the lesioned hemisphere (Marshall et al., 2000; Ward
et al., 2003; Murase et al., 2004). Conversely, some fMRI studies
showed a positive correlation between the gain after rehabilitation
therapy and the level of cortical activation in the contralesional
hemisphere (Cramer et al., 1997; Johansen-Berg et al., 2002a). Fur-
thermore, one study showed that the improvement in motor func-
tion and dexterity of stroke patients receiving anodal tDCS over the
lesioned motor cortex were associated with an increase in the
excitability of the contralesional rather than the ipsilesional hemi-
sphere (Cunningham et al., 2015). In fact, the beneficial contribu-
tion of contralesional hemispheric activation in motor
performance of the paretic limb might primarily result from the
involvement of premotor rather than primary motor areas
(Caramia et al., 2000; Johansen-Berg et al., 2002b). In addition,
the influence of inhibitory projections from the contralesional
brain areas to the spinal cord depends on the considered motor
region (either proximal or distal limb muscles), the degree of func-
tional impairment, and the extent of the neuronal damage.

Indeed, the most important factor for predicting brain stimula-
tion efficacy in motor stroke seems to be the integrity of the stim-
ulated cortical region and the corresponding corticospinal tract, as
assessed by MEP recordings (Talelli et al., 2006; van Kuijk et al.,
2009) or neuroimaging methods (Riley et al., 2011; Bradnam
et al., 2012). When the pyramidal motor structures are rather pre-
served in mildly to moderately affected patients, inhibition of con-
tralesional M1 by cathodal tDCS may promote stroke recovery at
least in the post-acute and chronic phases. When neuronal
destruction is more extensive in moderately to severely affected
patients, descending projections from the contralesional hemi-
sphere contribute to recovery and cathodal tDCS of contralesional
M1 may lead to further clinical deterioration (Bradnam et al.,
2012). In this case, reducing perilesional activity could be a better
strategy (Wu et al., 2013). Another factor involved in the outcome
of tDCS therapy appears to be the level of residual GABA activity in
the ipsilesional hemisphere. Actually, a greater motor improve-
ment results from anodal tDCS of ipsilesional M1 in patients
exhibiting higher GABA activity in the ipsilesional cortex (O’Shea
et al., 2014). A bimodal balance-recovery model, linking interhemi-
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spheric competition and functional recovery to the structural
‘‘neuronal reserve” spared by the lesion, was recently proposed
to enable NIBS protocols to be tailored to the needs of individual
patients (Di Pino et al., 2014).

To conclude, the possibility of promoting motor stroke recovery
by tDCS still needs to be demonstrated in large, multicentric RCTs
consisting of repeated sessions with prolonged follow-up. Accord-
ing to the currently published data, we can identify only some
trends in predicting tDCS efficacy. The combination of tDCS with
other therapies (e.g., virtual reality training (VRT) (Lee and Chun,
2014; Viana et al., 2014), occupational therapy (Nair et al., 2011;
Zheng and Schlaug, 2015), robot-assisted training (Ochi et al.,
2013; Picelli et al., 2015), or constraint-induced movement therapy
(Bolognini et al., 2011; Cunningham et al., 2015; Rocha et al.,
2016)) could result in synergistic effects to bring the effect of tDCS
at a clinically meaningful level. This point is of particular impor-
tance and one of the main challenges in daily practice will be to
optimize the combined approach of tDCS and rehabilitation thera-
pies to produce maximum synergy in both directions, i.e. increas-
ing the efficacy of tDCS through the action of rehabilitation
therapies and vice versa.

In the future, experimental designs should also take into account
the influence of stimulation parameters (site, intensity, duration),
the phase of stroke (acute, post-acute, chronic), the degree of clin-
ical impairment, and more importantly, the location and extent of
stroke lesion. A proper selection of patients is needed, substantiated
by a careful assessment of various anatomo-functional parameters
at baseline, to avoid a negative impact of unsuccessful trials on the
development of cortical stimulation strategies for treating stroke.
As examples of failure, there are trials that included patients with
severe cortical stroke unable to respond to such treatment (e.g.,
Hesse et al., 2011 for tDCS) or protocols that did not take into
account stroke-induced plasticity to design stimulation location
and settings (e.g., Harvey et al., 2009 for the EVEREST trial of
implanted epidural cortical stimulation). Thus, the plastic changes
in motor cortical representation and the integrity of the corti-
cospinal tract should be carefully investigated by means of motor
cortical mapping using navigated TMS (Ahdab et al., 2014;
Mellerio et al., 2014) and functional neuroimaging techniques, such
as diffusion tensor imaging tractography or analyses of resting-
state or task-dependent motor network connectivity.

There are potentially other interesting indications of tDCS in the
context of stroke, such as swallowing dysfunction (Kumar et al.,
2011; Yang et al., 2012; Shigematsu et al., 2013) or spasticity
(Hesse et al., 2011; Ochi et al., 2013; Vandermeeren et al., 2013;
Wu et al., 2013; Lee and Chun, 2014; Viana et al., 2014). The issue
of dysphagia was not further addressed in this work, since only one
study including more than 10 patients receiving the active treat-
ment has been reported so far (Shigematsu et al., 2013). Regarding
spasticity, tDCS was mostly combined with other therapeutic
strategies (VRT, physical therapy, robot-assisted training) as men-
tioned above. There were three large-scale sham-controlled stud-
ies: two are presented in Table 3 (Hesse et al., 2011; Viana et al.,
2014) and one was a non-replicated study of cathodal tDCS of
the contralesional motor cortex in patients in the chronic stroke
phase (Wu et al., 2013). Reviews and meta-analyses can be found
elsewhere on tDCS and dysphagia (Doeltgen et al., 2015; Yang
et al., 2015; Pisegna et al., 2016) or spasticity (Elsner et al., 2016a).

Beyond motor impairment, stroke may also affect other neuro-
logical functions, such as speech and language production or
awareness of the contralesional body or environment. A deficit in
the first of these functions refers to aphasia, which will be dis-
cussed in the next chapter, whereas a deficit in the second of these
functions refers to hemispatial neglect. A PubMed research
(keywords: tDCS AND neglect AND stroke) identified 17 papers,
including 6 original clinical trials and 41 patients. These studies
included only one to ten patients, with a certain methodological
heterogeneity, therefore precluding any recommendation in this
clinical condition.
7. Aphasia

Aphasia is a highly disabling language disorder frequently
caused by a left-lateralized hemispheric stroke (Laska et al.,
2001). Even if traditional linguistic-based therapies have been
proved to induce an adequate clinical improvement (Basso et al.,
2011; Code and Petheram, 2011; Brady et al., 2012), a large per-
centage of patients are left with some degree of language impair-
ment (Lazar et al., 2010). It has been suggested that one of the
key predictors for positive language outcomes is treatment inten-
sity (i.e., more than 5 h of speech therapy per week) (Bhogal
et al., 2003). Therefore, effective treatment approaches that might
be used as an adjunct to common speech and language therapies
are urgently needed to maximize the recovery process in aphasic
patients. The recent application of NIBS techniques to language
rehabilitation, such as tDCS, has already provided positive results
(Monti et al., 2013). Generally, interhemispheric competition
between the residual language areas in the damaged left hemi-
sphere and the intact right hemisphere underlies the basic concept
for tDCS language treatment (Kiran, 2012). In particular, it has been
proposed that in patients with left hemispheric damage, the homo-
topic contralateral right hemispheric areas may be in a state of
abnormally high activation and may exert an inhibitory effect over
the stroke-affected hemisphere (Belin et al., 1996; Murase et al.,
2004). Thus, a language improvement may be possible either by
increasing the output of the perilesional left hemisphere through
excitatory (anodal) tDCS, by decreasing the inhibition from the
intact right hemisphere by applying inhibitory (cathodal) tDCS
over the contralesional cortex, or both.

A PubMed search (keywords: tDCS AND aphasia) identified 102
papers, including 35 original clinical studies and 431 patients.
Studies mainly concerned patients with nonfluent poststroke
aphasia, while there are three studies on primary progressive
aphasia (Wang et al., 2013; Cotelli et al., 2014b; Tsapkini et al.,
2014), which will be not analyzed further, because of the low vol-
ume of reported data and the methodological heterogeneity of
those studies. Regarding nonfluent poststroke aphasia, most stud-
ies were single case reports or small series of patients, including
less than 10 patients receiving active stimulation, or based on sin-
gle tDCS sessions (Class III or IV studies). Therefore, only 5 studies
were retained for analysis regarding tDCS effects on nonfluent
aphasics (Table 4). Anodal tDCS was applied over the Broca’s area
(left inferior frontal gyrus) in four studies and over the Wernicke’s
area (left postero-superior temporal gyrus) in two studies. How-
ever, we have to mention that the first tDCS work on aphasia
showed that only cathodal tDCS (and not anodal tDCS) over a left
frontotemporal region significantly improved the accuracy of the
picture naming task in 8 chronic non-fluent post-stroke aphasic
patients (Monti et al., 2008).

Regarding anodal tDCS applied over Broca’s area, several sham-
controlled studies issued from the same group (Fiori et al., 2013;
Marangolo et al., 2013a,c, 2014a; Campana et al., 2015) and per-
formed in series of 7–20 patients with nonfluent poststroke apha-
sia were in favour of a significant improvement of speech and
language performance at the end of a protocol of 5–10 sessions
of active tDCS. Conversely, two sham-controlled studies from
another group (Polanowska et al., 2013a,b) did not find significant
difference between active and sham conditions in language recov-
ery after 15 sessions of tDCS performed in 24 nonfluent aphasics.
These two sets of studies present several differences, including
the post-stroke phase in which patients were included: either the
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postacute phase (2 months in average) (Polanowska et al., 2013a,b)
or the chronic phase (ranging from 6 months to 7 years) (Fiori
et al., 2013; Marangolo et al., 2013a,c; Campana et al., 2015). Any-
way, no recommendation can be drawn from these results.

There are several other studies based on single sessions or smal-
ler sample size with the same tDCS montage. In the study pub-
lished by Volpato et al. (2013), 2 nonfluent and 6 fluent aphasics
at chronic stage (6–126 months after stroke) did not benefit from
10 sessions of anodal tDCS over Broca’s area in object and action
naming accuracy. In this latter study, tDCS was applied as a ‘‘sin-
gle” therapy. In contrast, various studies showed the potential
value of coupling multiple sessions of anodal tDCS over Broca’s
area with concurrent language or conversational therapy (Baker
et al., 2010; Marangolo et al., 2011, 2013a,c, 2014a; Fiori et al.,
2013; Campana et al., 2015). Except the study by Baker et al.
(2010), all other studies were issued from the same group, showing
significant tDCS-induced changes not only in naming performance
but also in the recovery from articulatory disturbances and speech
production deficits. In the study of Baker et al. (2010), 4 nonfluent
and 6 fluent aphasics at a chronic stage (10–242 months after
stroke) received 5 sessions of anodal tDCS over the left frontal cor-
tex while performing a computerized anomia treatment. In this
study, fMRI investigation was performed during an overt naming
task in each individual to position the active anode over struc-
turally intact frontal cortex. The tDCS protocol improved naming
accuracy at least during one-week follow-up. One of the two
non-fluent aphasics who received stimulation specifically over
the Broca’s area benefited from the treatment.

Regarding anodal tDCS applied over Wernicke’s area, three
studies found beneficial results of a protocol of 5 sessions of tDCS
coupled with naming treatment in 12 patients with various types
of aphasia in the postacute phase (3–6 months after stroke) (Wu
et al., 2015) and in smaller groups of 3 nonfluent (Fiori et al.,
2011) and 8 fluent (Fridriksson et al., 2011) aphasics at the chronic
phase, with the improvement lasting up to 3 weeks after the end of
the intervention. In contrast, this montage did not provide any sig-
nificant improvement in auditory comprehension and naming in a
series of 7 patients with various types of aphasia in the postacute
phase (about one month after stroke) (You et al., 2011). Again,
these results preclude any recommendation for anodal tDCS over
the left hemisphere.

However, according to the concept of interhemispheric rivalry
as the origin of poststroke functional changes, other tDCS studies
aimed at stimulating cathodally the homologous regions of Broca’s
and Wernicke’s areas in the right hemisphere.

Cathodal tDCS of the right homologous of Broca’s area was per-
formed in four studies (Jung et al., 2011; Kang et al., 2011; Vines
et al., 2011; Cipollari et al., 2015), based on multiple session (3–
10) protocols in patients at either postacute or chronic stage.
Two of these studies showed improvement in verbal fluency but
included only 6 nonfluent aphasics (Vines et al., 2011; Cipollari
et al., 2015), while the other two studies were performed on
respectively 10 (Kang et al., 2011) and 37 patients (Jung et al.,
2011), the latter study being based on an open-label protocol. In
the study by Kang et al. (2011), each patient received a daily ses-
sion of cathodal tDCS for 5 consecutive days in a randomized cross-
over manner coupled with conventional word-retrieval training.
Significantly improved picture naming was observed at 1 h follow-
ing the last active tDCS session but no changes were observed after
sham tDCS. Some improvement was also reported after cathodal
tDCS of the right homologous of Wernicke’s area in a single case
(Cherney et al., 2013) and in a series of 7 patients with various
types of aphasia in the postacute phase (You et al., 2011). In con-
trast, this montage did not provide any significant improvement
in 12 chronic aphasics (Flöel et al., 2011). Therefore, these results
do not allow any recommendation to be proposed.
Another approach was to combine both anodal tDCS of the left
inferior frontal gyrus and cathodal tDCS of the right inferior frontal
gyrus in a bihemispheric (‘‘dual”) tDCS strategy. The first proof-of-
concept was provided by an open-labelled single-session study
performed in 6 nonfluent and 5 fluent aphasics at a chronic stage
(Lee et al., 2013). Marangolo et al. (2013b, 2014b, 2016) and
Cipollari et al. (2015) extended this result in a series of 6–9 nonflu-
ent aphasics at a chronic stage receiving 10–15 sessions of bihemi-
spheric tDCS combined with speech and language therapy.
Improvement in picture description, noun and verb naming, word
reading and repetition accuracy, and response time lasted up to
one week after the intervention. However, these results still
remain to be reproduced on a larger sample size by another inde-
pendent team. It is interesting to note that a similar strategy of
bihemispheric (‘‘dual”) stimulation was succesfully applied using
high-frequency rTMS over Broca’s area combined with low-
frequency rTMS over its right homologous to promote poststroke
rehabilitation of aphasia (Khedr et al., 2014a).

We also have to mention that a bihemispheric tDCS strategy
targeted on the DLPFC (and not the inferior frontal gyrus) was suc-
cessfully applied in two open-labelled case series of 1–4 patients
with chronic nonfluent aphasia (Manenti et al., 2015; Valiengo
et al., 2016). Finally, one group chose the original strategy of stim-
ulating the motor cortex combined with computer-assisted lan-
guage therapy to improve recovery outcome in poststroke
aphasia (Meinzer et al., 2016). In a recently reported trial including
26 patients with various types of poststroke aphasia, anodal tDCS
administered for 2 weeks over the left M1 (C3 site, with the cath-
ode over the right supraorbital region) was found to produce a ben-
eficial effect on naming ability. Improvement after active vs. sham
procedure was especially larger for trained items during follow-up
(6 months after stimulation) and regarding transfer to untrained
items (Meinzer et al., 2016). However, the value of this approach
remains to be replicated by another research group.

To conclude, some beneficial results were reported using anodal
tDCS over Broca’s and Wernicke’s areas, cathodal tDCS over the
right homologue of Broca’s area, or a bihemispheric stimulation
of both inferior frontal gyri. However, the level of evidence is not
sufficient to ensure the efficacy or the therapeutic potential of
any of these protocols in the rehabilitation of poststroke aphasics.
A similar conclusion was reported in a meta-analysis issued in
2013 and updated in 2015 (Elsner et al., 2013a, 2015). Moreover,
direct comparisons between these different montages and
approaches are lacking. Therefore, further studies are needed to
identify which parameters of stimulation (e.g., anodal or cathodal
monohemispheric or bihemispheric stimulation, stimulation
intensity, session duration, interval between sessions. . .) can max-
imize tDCS effect on the recovery process. Most studies are case
reports or have small sample size and some of them did not mon-
itor the benefits obtained over time during and beyond the period
of stimulation. Large, multicentric RCTs are needed to replicate the
results and to assess different outcome measures, such as stan-
dardized tests of everyday communication abilities. If promoting
effects of tDCS on stroke recovery are confirmed in larger samples
of aphasic patients, the parameters of stimulation to use in daily
practice should be clearly determined, as well as the optimal time
after stroke to initiate the treatment, the type of aphasia to manage
(nonfluent, fluent, or both) and the concomitant speech and lan-
guage therapy to perform.
8. Multiple sclerosis

Multiple sclerosis (MS) is one of the most common neurological
diseases and a serious cause of disability in young adults. Its natu-
ral course is characterized by recurrent relapses or progressive



Table 4
Repeated tDCS session protocols in poststroke nonfluent aphasics.

Articles Number and type of patients (protocol
design)

Stimulation electrode
location

Stimulation intensity,
session duration, total
number of sessions
(protocol duration;
follow-up)

Clinical results Class

Anodal stimulation of Broca’s area
Marangolo

et al.
(2013a)

12 nonfluent aphasics (chronic stroke:
7–84 months after stroke) (crossover;
combined with conversational
therapy)

Anode: left inferior frontal
gyrus/Broca’s area (F5).
Cathode: right supraorbital
region

1 mA, 20 min, 10
sessions (2 weeks, FU:
1 month)

Improvement in content units, verbs and
sentences production after active vs. sham
tDCS at the end of the intervention and
1 month later

II

Polanowska
et al.
(2013a)

24 nonfluent aphasics (postacute
stroke: 2–24 weeks after stroke) (14
active, 10 sham; combined with
speech and language therapy)

Anode: left inferior frontal
gyrus/Broca’s area
(between T3-Fz and F7-Cz).
Cathode: right supraorbital
region

1 mA, 10 min, 15
sessions (3 weeks, FU:
3 months)

No difference in naming accuracy and time
after active vs. sham tDCS at the end of the
intervention and 3 months later, but higher
effect sizes in naming time after active tDCS

III

Polanowska
et al.
(2013b)

24 nonfluent and 13 fluent aphasics
(postacute stroke: 2–24 weeks after
stroke) (18 active, 19 sham; combined
with speech and language therapy)

Anode: left inferior frontal
gyrus/Broca’s area
(between T3-Fz and F7-Cz).
Cathode: right supraorbital
region

1 mA, 10 min, 15
sessions (3 weeks, FU:
3 months)

No difference in naming, comprehension,
and verbal repetition after active vs. sham
tDCS at the end of the intervention and
3 months later, but higher effect sizes in
naming and verbal repetition after active
tDCS

III

Campana
et al.
(2015)

20 nonfluent aphasics (chronic stroke:
6–84 months after stroke) (crossover;
combined with conversational
therapy)

Anode: left inferior frontal
gyrus/Broca’s area (F5).
Cathode: right supraorbital
region

2 mA, 20 min, 10
sessions (2 weeks, no
FU)

Improvement in picture description, noun
and verb naming after active tDCS at the end
of the intervention, with difference
according to the integrity of different left
subcortical structures

II

No recommendation for anodal tDCS of left Broca’s area in nonfluent poststroke aphasics.
EEG: electroencephalography; FU: follow-up.
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functional decline. With disease evolution, patients could accumu-
late several neurological dysfunctions or disease-related complica-
tions including motor deficit, fatigue, tremor, spasticity, sensory
disturbances, pain, genital or urinary symptoms, and psychiatric
or cognitive disorders. Many of these clinical aspects are difficult
to manage, being resistant to pharmacological treatments. Thus,
dealing with MS complications constitutes a real challenge to every
person in charge, making new approaches much needed in this
domain. The effects of tDCS have been assessed on various symp-
toms in MS patients. A PubMed search (keywords: tDCS AND mul-
tiple sclerosis) identified 19 papers, including 11 original clinical
studies and 205 patients. The topic of these 11 studies was as
follows:

– fatigue (Ferrucci et al., 2014; Saiote et al., 2014; Tecchio et al.,
2014, 2015; Ayache et al., 2016);

– cognition, attention and executive function (Ayache et al., 2016;
Mattioli et al., 2016);

– motor performance (Cuypers et al., 2013; Meesen et al., 2014);
– spasticity (Iodice et al., 2015);
– pain or tactile sensory deficit (Mori el al., 2010, 2013; Ayache
et al., 2016).

To date, the main MS domain investigated in tDCS trials con-
cerned fatigue, a very frequent symptom in MS patients, with a
complex pathophysiology, mixing pathological changes related to
the disease itself and various comorbidities which may be accessi-
ble to NIBS techniques (Palm et al., 2014a; Chalah et al., 2015). Pro-
tocols varied greatly between studies, including the cortical target,
which was either the bilateral motor cortex (Ferrucci et al., 2014),
the bilateral sensory or sensory-motor cortex (Tecchio et al., 2014,
2015), or the left DLPFC (Saiote et al., 2014; Ayache et al., 2016).
Data provided by motor or sensory cortex tDCS are summarized
in Table 5, showing a mean reduction of 28% of the score on the
modifed fatigue impact scale (mFIS) after active tDCS, whatever
the montage and the study. However, given the methodological
heterogeneity of the two types of study (Ferrucci et al., 2014 vs.
Tecchio et al., 2014, 2015), no recommendation can be made.
Regarding anodal tDCS of the left DLPFC (F3), no significant effect
was observed after either 3 daily sessions performed in 8 patients
with relapsing-remitting (RR) or progressive MS (Ayache et al.,
2016) or 5 daily sessions performed in 13 patients with RR-MS
(Saiote et al., 2014). However, in the latter study, the responders
to tDCS were characterized by a higher prefrontal lesion load in
brain MRI analysis, which might favour tDCS targeting over the
lesioned areas in MS.

Regarding cognition and executive function, Mattioli et al.
(2016) reported in 20 MS patients (10 in the active arm and 10
in the sham arm) that 10 daily sessions of anodal tDCS of the left
DLPFC could improve the impact of cognitive training (performed
concurrently with tDCS) on attention and speed of information
processing. The effects were found to persist up to 6 months after
the intervention. These effects on attention were not replicated in
another study of 16 MS patients (8 in the active arm and 8 in the
sham arm) (Ayache et al., 2016).

Regarding motor performance, Cuypers et al. (2013) showed
that a single session of anodal tDCS of M1, contralateral to the most
impaired hand, increased motor corticospinal output and strength
in MS patients. Therefore, the authors suggested that tDCS could be
considered in motor training protocols for the rehabilitation of MS
patients. However, Meesen et al. (2014) tested the add-on value of
a single session of anodal tDCS of M1, contralateral to the most
impaired hand, on motor training in MS patients. They did not find
any difference between active and sham conditions, especially
regarding finger tapping test. These single-session results should
be interpreted with caution, since multiple sessions are probably
required to bring tDCS effects to a clinically meaningful level.

Regarding spasticity, Iodice et al. (2015) showed in a sham-
controlled parallel-arm study of 20 RR-MS patients that a 5-day
protocol of anodal tDCS delivered to M1 of the most affected side
produced no significant impact on the modified Ashworth scale
(MAS) or other scales relative to MS spasticity or walking abilities.

Finally, three studies with a parallel-arm design investigated
the effect of tDCS on sensory aspects of MS. The first study con-
sisted of 5 sessions of anodal tDCS applied over the motor cortex
(C3/C4 in the 10–20 system of EEG electrode placement) contralat-



Table 5
Repeated tDCS session protocols in multiple sclerosis fatigue.

Articles Number and type of
patients (protocol
design)

Stimulation
electrode location

Stimulation intensity,
session duration, total
number of sessions
(protocol duration; follow-
up)

Clinical results Class

Ferrucci et al. (2014) 23 patients (19 RR, 4
SP; EDSS 0–6.5)
(crossover)

Anode: bilateral
motor cortex (C3
+ C4). Cathode: right
deltoid muscle

1.5 mA, 15 min, 5 sessions
(1 week; FU: 3 weeks)

Fatigue reduction (mean (mFIS): �28%) after active
but not sham tDCS at the end of the intervention.
After active tDCS, 15/23 patients (65%) were
considered responders up to 3 weeks after

II

Tecchio et al. (2014) 10 patients (7 RR, 1 SP,
2 PP; EDSS 0–3.5)
(crossover)

Anode: whole body
S1 personalized
electrode. Cathode:
Occipital (Oz)

1.5 mA, 15 min, 5 sessions
(1 week; FU: 8 weeks)

Fatigue reduction (mean (mFIS): �28%) after active
but not sham tDCS at the end of the intervention

II

Tecchio et al. (2015) 13 patients (13 RR;
EDSS 0–3.5) (crossover)

Anode: whole body
S1 personalized
electrode. Cathode:
Occipital (Oz)

1.5 mA, 15 min, 5 sessions
(1 week; no FU)

Fatigue reduction (mean (mFIS): �28%) after active
but not sham tDCS at the end of the intervention,
without correlation with MEP and SEP changes

II

No recommendation for anodal tDCS of sensory or motor cortex in multiple sclerosis fatigue.
EDSS: Expanded Disability Status Scale; FU: follow-up; MEP: motor evoked potentials; mFIS: modified fatigue impact scale; PP: primary progressive; RR: relapsing-remitting;
S1: primary somatosensory cortex; SEP: somatosensory evoked potentials; SP: secondary progressive.
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eral to the painful somatic area in 19 RR-MS patients (10 in the
active arm and 9 in the sham arm) (Mori et al., 2010). A significant
pain relief was observed after active tDCS compared to sham tDCS,
while there was no change in depression or anxiety scores. In the
second study, the same authors performed 5 sessions of anodal
tDCS 2 cm posteriorly to the C3/C4 position in order to stimulate
S1, contralateral to the hypoesthetic upper limb of 20 RR-MS
patients (10 in the active arm and 10 in the sham arm) (Mori
et al., 2013). They found a significant improvement of tactile dis-
criminatory thresholds and sensation scores after anodal tDCS
compared to sham stimulation, again without any impact on
depression scores (Mori et al., 2013). Finally, in a third study
including 16 MS patients (8 in the active arm and 8 in the sham
arm), three consecutive daily sessions of anodal tDCS applied to
the left DLPFC were found to produce significant analgesic effects
compared to a sham condition, without concomitant improvement
on mood, fatigue, or attention (Ayache et al., 2016).

In summary, tDCS studies in the MS domain are sparse and
results are still preliminary and heterogenous regarding the meth-
ods used and the symptoms to treat. Therefore, no recommenda-
tions can be made.

9. Epilepsy

Although NIBS techniques aimed at modifying cortical excitabil-
ity, the study of their therapeutic potential in epilepsy remains
underdeveloped. This is the case for rTMS (Lefaucheur et al.,
2014) and even more for tDCS. Actually, a PubMed search (key-
words: tDCS AND Epilepsy) identified 65 papers, including only
10 original clinical studies and 147 patients. Moreover, 5 of these
studies were case reports of 1–5 patients, while 5 sham-
controlled studies with crossover or parallel-arm design included
12–37 patients (Fregni et al., 2006g; Auvichayapat et al., 2013;
Liu et al., 2016; San-Juan et al., 2016; Tekturk et al., 2016b). Two
of these studies were based on a single tDCS session (Fregni et al.,
2006g; Auvichayapat et al., 2013), while another study (Liu et al.,
2016) explored the safety and antidepressant efficacy of a multiple
(5-day) tDCS session protocol in a series of epileptic patients, but
did not address the question of the antiepileptic potential of tDCS.

In Fregni et al. (2006g), tDCSwas targeted over the epileptogenic
focus in 19 patients with focal epilepsy due to cortical dysplasia. A
single session of active cathodal tDCS delivered at 1 mA for 20 min
and performed in 10 of these patients, led to a reduction in epileptic
discharge frequency, with a trend towards a decrease in the number
of clinical seizures. The remaining 9 patients did not benefit from
sham tDCS. In Auvichayapat et al. (2013), cathodal tDCS was also
applied at 1 mA as a single session of 20 min over the seizure focus
in a series of 29 childrenwith focal epilepsy (29patients in the active
tDCS group and 7 patients in the sham tDCS group). A reduction in
epileptic discharge frequency was observed up to 48 h after active
tDCS, but the final result was clinically negligible.

In Liu et al. (2016), anodal tDCS (2 mA) was applied for 20 min
over the left DLPFC (F3), with the cathode over the right supraor-
bital area, for 5 consecutive days, according to a depression ther-
apy protocol. Thirty-three patients with temporal lobe epilepsy
completed the study (21 patients in the active tDCS group and
12 patients in the sham tDCS group). Beyond the antidepressant
effects, active tDCS did not increase seizure or interictal discharge
frequency. This study provides evidence for the safety of anodal
tDCS of left DLPFC in epileptic patients, but was not intended to
investigate antiepileptic therapy.

Few case reports or small sample studies have shown the value
of repeated cathodal tDCS sessions applied over the epileptic focus
to reduce epileptic EEG activity or the number of seizures, e.g. 4–5
tDCS sessions in 2–5 patients with Rasmussen’s encephalitis (San-
Juan et al., 2011; Tekturk et al., 2016a) and 2 tDCS sessions in 2
patients with focal epilepsy (Assenza et al., 2014). The effect of
repeated cathodal tDCS sessions on seizure frequency was recently
reported in larger populations of patients with mesial temporal
lobe epilepsy and hippocampal sclerosis (San-Juan et al., 2016;
Tekturk et al., 2016b). In the first study of 28 patients with a
parallel-arm design (20 patients in the active arm and only 8
patients in the sham arm) (San-Juan et al., 2016), the cathode
was positioned over the most active area of interictal epileptiform
discharges defined on scalp EEG. In the second study of 12 patients
with a crossover design (Tekturk et al., 2016b), the cathode was
placed over the temporal region (T3 or T4), contralateral to the
most affected side. In both studies, the anode was placed over
the controlateral supraorbital region and tDCS was delivered at
2 mA for 30 min in 3–5 sessions performed on consecutive days.
The mean seizure frequency significantly decreased after active
but not sham tDCS in both studies, even associated with a reduc-
tion of interictal epileptiform discharges on scalp EEG immediately
after tDCS (San-Juan et al., 2016). However, the comparability of
the procedure used in these two studies remains to be determined,
especially regarding cathode location and therefore, no recommen-
dation can be made about the potential efficacy of tDCS in the
treatment of any type of epilepsy.
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10. Disorders of consciousness

Disorders of consciousness, such as minimally conscious state
(MCS) and vegetative state (VS), are highly challenging clinical
conditions for treatment. A PubMed search (keywords: tDCS AND
vegetative state OR disorders of consciousness) identified 23
papers, including 4 original clinical studies and 79 patients. These
four studies included 10, 30, 25, and 14 patients, respectively
(Angelakis et al., 2014; Thibaut et al., 2014; Naro et al., 2015,
2016). The left DLPFC was targeted with anodal tDCS applied for
20 min at 2 mA and for 5 days in a first study based on a limited
number of patients (3 patients in MCS and 7 patients in VS)
(Angelakis et al., 2014) and only as a single session for the second
study, which included a larger sample size (30 patients in MCS and
25 patients in VS) (Thibaut et al., 2014). Both studies, from inde-
pendent groups, arrived at a similar conclusion: patients with
MCS but not those with persistent VS or coma can benefit from
anodal tDCS of the left DLPFC, combined with cathodal tDCS of
the right homologue area (Thibaut et al., 2014) or the right orbito-
frontal cortex (Angelakis et al., 2014).

Another group delivered single sessions of anodal tDCS over the
orbitofrontal cortex, the DLPFC, or a parieto-occipital region in 25
and 14 patients affected by various disorders of consciousness
(Naro et al., 2015, 2016). More particularly, these authors intended
to show that the response to tDCS could demonstrate the persis-
tence of residual functional connectivity within large-scale brain
networks in patients with MCS or more severe disorders of
consciousness.

In conclusion, some beneficial results of tDCS protocols have
been shown in patients with disorders of consciousness, especially
targeting the left DLPFC in MCS. However, the reported data are
very preliminary, obtained in small samples, with heterogeneous
outcome measures, including either clinical or functional connec-
tivity variables. Therefore, no recommendation can be made, espe-
cially regarding the number of sessions and the amount and
clinical profile of the patients to treat.
11. Alzheimer’s disease

Since its updating in the early 2000s, tDCS has been widely used
in neuropsychological studies to act on cognitive and behavioural
features, e.g., attention, memory and working memory, computa-
tion, decision-making, and so on, in either healthy humans or
patients with various neuropsychiatric diseases (Shin et al., 2015;
Hill et al., 2016). Therefore, there are a lot of expectations regard-
ing the therapeutic potential of tDCS to modulate psychological
processes in cognitive disorders, such as Alzheimer’s disease
(AD). A PubMed search (keywords: tDCS AND Alzheimer’s disease)
identified 46 papers, including 9 original clinical studies and 189
patients. Among these 9 studies, there are 1 case report, 1 study
on patients with mild cognitive impairment (MCI), and 7 studies
that included 10–40 AD patients (Ferrucci et al., 2008a; Boggio
et al., 2009a, 2012; Cotelli et al., 2014a; Khedr et al., 2014b;
Suemoto et al., 2014; Bystad et al., 2016).

The main target explored was the left DLPFC, which was
intended to be activated by anodal tDCS to improve cognitive per-
formance. In this domain, the four published studies showed dif-
ferent primary outcome assessments that were a visual
recognition memory task (Boggio et al., 2009a), a face-name asso-
ciation task (Cotelli et al., 2014a), an apathy score (Suemoto et al.,
2014), or the Mini Mental State Examination (MMSE) (Khedr et al.,
2014b). The initial single-session study showed memory improve-
ment in 10 patients having received active anodal tDCS of the left
DLPFC (Boggio et al., 2009a). Three more recent sham-controlled
studies were retained for analysis (Table 6), including 11–20 AD
patients having received the active condition in a protocol com-
prising several tDCS sessions. No safety problems emerged in these
studies, in which the left DLPFC was targeted with anodal tDCS
applied for 20–25 min at 2 mA for 6–10 sessions performed within
two weeks. One study also considered cathodal stimulation of the
left DLPFC (Khedr et al., 2014b), while another study explored the
value of tDCS combined with memory training (Cotelli et al.,
2014a). Although one study showed a significant cognitive
improvement on MMSE after both anodal and cathodal tDCS of
the left DLPFC, lasting for up to 2 months after the intervention
(Khedr et al., 2014b), the other two studies were negative. One
study showed that active tDCS had no additional value compared
to sham tDCS on the improvement in cognitive performance pro-
vided by memory training (Cotelli et al., 2014a). The other study,
the largest sham-controlled RCT published to date in this domain
(Suemoto et al., 2014), which was adequately powered for disclos-
ing minimally clinically significant differences after the interven-
tion, did not show any significant effect of the active anodal tDCS
condition targeting the left DLPFC. Therefore, no recommendation
can be currently made regarding the efficacy of anodal tDCS of the
left DLPFC to improve cognitive performance in AD patients.

Besides the left DLPFC, the other studies aimed at targeting a
temporo-parietal region bilaterally with anodal tDCS, placing one
anode over each hemisphere and a cathode at an extracephalic
location (deltoid muscle). The stimulation was applied for 15–
30 min at 2 mA during repeated daily sessions for 5 days in one
study (Boggio et al., 2012) but only in a single session in two other
studies that included 10 AD patients each (Ferrucci et al., 2008a;
Boggio et al., 2009a). The primary aim was to improve recognition
memory. The initial single-session studies showed beneficial effect
on word or visual recognition memory, but this result was not con-
firmed by a subsequent multiple-session RCT (Boggio et al., 2012).
In this latter crossover study, including 15 AD patients, visual
recognition memory was improved after active vs. sham anodal
tDCS of the both temporal cortices at one month after the interven-
tion, but the statistical interaction ‘‘time x group” was not signifi-
cant. Therefore, no recommendation can be currently made
regarding the efficacy of bilateral anodal tDCS of the temporo-
parietal cortex to improve cognitive performance in AD patients.

12. Tinnitus

Tinnitus is a phantom perception of a sound in the absence of a
corresponding external sound source and occurs in 5–15% of the
population (Axelsson and Ringdahl, 1989; Heller, 2003; Gallus
et al., 2015). Whereas many patients can habituate to this sound,
quality of life is severely disrupted in about 25% of the patients
who cannot cope with the tinnitus (Axelsson and Ringdahl,
1989). In these patients, tinnitus is frequently associated with anx-
iety, depression, cognitive impairment, and sleep disturbances.

Although numerous treatments have been introduced, evidence
for an uniformly successful treatment is lacking (Langguth et al.,
2013). The lack of efficient therapies for tinnitus partly originates
from the heterogeneity of tinnitus and an incomplete understand-
ing of the pathophysiology of the different forms of tinnitus
(Elgoyhen et al., 2015). In most cases, tinnitus is triggered by hear-
ing loss or abnormalities in the inner ear or the peripheral auditory
pathway. This results in neuroplastic changes in the central ner-
vous system encompassing a wide network of auditory and non-
auditory brain areas (De Ridder et al., 2014). However, some forms
of tinnitus appear to be unrelated to hearing loss, which probably
reflect a different pathophysiological mechanism and require
therefore perhaps a different strategy of neuromodulation
(Vanneste and De Ridder, 2015).

Over the last decade, tDCS has been used for elucidating the
involvement of specific brain networks in tinnitus pathophysiology



Table 6
Repeated tDCS session protocols in Alzheimer’s disease.

Articles Number and type of patients
(protocol design)

Stimulation
electrode location

Stimulation intensity,
session duration, total
number of sessions
(protocol duration;
follow-up)

Clinical results Class

Cotelli et al. (2014a) 36 patients (mean MMSE 20–22)
(12 active + memory training, 12
active + motor training, 12
sham + memory training)

Anode: left DLPFC.
Cathode: right
deltoid muscle

2 mA, 25 min, 10 sessions
(2 weeks; FU: 6 months)

No difference in cognitive performance
improvement (face-name association task)
after active vs. sham tDCS combined with
memory training, but no improvement when
combined with motor training

II

Khedr et al. (2014b) 34 patients (MMSE 12–23) (11
anodal, 12 cathodal, 11 sham)

Anode: left DLPFC.
Cathode: right
supraorbital
region (or the
reverse)

2 mA, 25 min, 10 sessions
(2 weeks; FU: 2 months)

Improvement in cognitive performance
(MMSE) after either anodal or cathodal vs.
sham tDCS at 2 months after the intervention,
with reduction of P300 latency, but no effect
on M1 excitability

II

Suemoto et al. (2014) 40 patients (MMSE 10–20) (20
active, 20 sham)

Anode: left DLPFC.
Cathode: right
supraorbital
region

2 mA, 20 min, 6 sessions
(2 weeks; FU: 1 week)

No change in apathy scores, global cognition,
and neuropsychiatric symptoms after active
vs. sham tDCS

II

Bystad et al. (2016) 25 patients (MMSE > 17) (12
active, 13 sham)

Anode: left
temporal lobe
(T3). Cathode:
right supraorbital
region

2 mA, 30 min, 6 sessions
(2 weeks; no FU)

No change in verbal memory function after
active vs. sham tDCS

II

No recommendation for anodal tDCS of the left DLPFC in Alzheimer’s disease.
DLPFC: dorsolateral prefrontal cortex; FU: follow-up; M1: primary motor cortex; MMSE: Mini Mental State Examination.

Table 7
Repeated tDCS session protocols in tinnitus.

Articles Number and type of patients
(protocol design)

Stimulation electrode location Stimulation intensity,
session duration, total
number of sessions (protocol
duration; follow-up)

Clinical results Class

Shekhawat
et al.
(2013a)

40 patients (20 active, 20
sham; followed by sound
therapy from hearing aid use
for 6 months)

Anode: left temporo-parietal cortex
(between C3 and T5). Cathode: right
supraorbital region (F8)

2 mA, 20 min, 5 sessions
(1 week; FU: 6 months)

No difference in the effect on tinnitus
functional index, handicap
questionnaire, and severity scores
after active vs. sham tDCS

II

Teismann
et al.
(2014)

32 patients (10 anodal, 11
cathodal, 11 sham; combined
with tailor-made notched
music training)

Anode: left temporo-parietal cortex/
Heschl’s Gyrus (between C3 and T3,
1 cm inferior). Cathode: right
supraorbital region

2 mA, 30 min, 5 sessions
(1 week; FU: 31 days)

No difference in the effect on tinnitus
handicap questionnaire and inventory
after either anodal or cathodal vs.
sham tDCS

II

Forogh
et al.
(2016)

22 patients (11 active, 11
sham)

Anode: left temporo-parietal cortex
(between C3 and T5). Cathode: right
supraorbital region

2 mA, 20 min, 5 sessions
(1 week; FU: 2 weeks)

No difference in the effect on tinnitus
handicap inventory and VAS after
active vs. sham tDCS

II

Hyvärinen
et al.
(2016)

19 patients (10 active, 9
sham)

Anode: left temporal cortex. Cathode:
right frontal region

2 mA, 20 min, 10 sessions (10
consecutive days; FU:
4 weeks after treatment
start)

No difference in the effect on tinnitus
handicap inventory after active vs.
sham tDCS

II

Recommendation: anodal tDCS of the left temporo-parietal cortex is probably ineffective in chronic tinnitus (Level B).
FU: follow-up; VAS: visual analogue scale.
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and has also been investigated as a novel therapeutic approach for
tinnitus patients (Langguth et al., 2013). A PubMed search (key-
words: tDCS AND tinnitus) identified 48 papers, including 23 orig-
inal clinical studies and 2,335 patients, but the included patients
were largely redundant among studies. In addition, most of these
studies have investigated the immediate or short-term effect of
single tDCS sessions on tinnitus perception. Longer lasting effects
of multiple tDCS sessions were only assessed in 9 studies involving
172 patients treated with active tDCS. Finally, a variety of tDCS
montages have been evaluated, targeting either the auditory cortex
or the DLPFC or both.

From literature data, only 4 original sham-controlled studies
including at least 10 patients who received active tDCS for multiple
sessions were retained for analysis (Table 7). All these studies
concerned anodal tDCS of the left temporal or temporoparietal
(auditory) cortex. Neuroimaging has demonstrated abnormalities
of oscillatory brain activity, connectivity and metabolism in the
auditory cortex of tinnitus patients (De Ridder et al., 2014). These
changes in the auditory cortical area led to the hypothesis that it
should be possible to treat tinnitus by modulating these abnormal-
ities through the stimulation of the brain. In an initial study, Fregni
et al. (2006f) targeted the left temporal cortex in 7 patients with
anodal tDCS (placing the cathodal electrode supraorbital) for a sin-
gle session of 3 minwith a 1 mA intensity. They demonstrated a sig-
nificant tinnitus reduction of 42% in 3 out of 7 patients. In a double-
blind placebo-controlled follow-up study including 20 patients,
Garin et al. (2011) also found a significant effect of a single session
of anodal tDCS of the left temporal cortex (1 mA for 20 min) in
comparison to cathodal and sham stimulation on tinnitus loudness
immediately and still one hour after stimulation. A further
study investigating dose/effects revealed that single sessions of
anodal tDCS of the left temporal cortex were more effective when
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stimulation was performed at higher stimulation intensity (2 mA)
for 20 min (Shekhawat et al., 2013b). Using these parameters,
Joos et al. (2014) found in a large series of patients with tinnitus
that a single session of anodal stimulation of the left temporal cor-
tex (39 patients), but not of the right temporal cortex (136 patients)
could lead to significant tinnitus reduction. Vanneste et al. (2013a)
applied tDCS at 1.5 mA for 20 min bilaterally on the temporal cor-
tices (T3 + T4) comparing the combination of left anode + right
cathode (20 patients) versus right anode + left cathode (16 patients)
and did not find any difference in the change provided by these two
montages on tinnitus distress and loudness. In the same study,
these authors also compared the effect of transcranial alternating
current stimulation (tACS) and transcranial random noise stimula-
tion (tRNS) applied bilaterally over the temporal cortices. A signif-
icant tinnitus reduction was observed after tRNS, but not after
tDCS or tACS. Based on the hypothesis that neuroplastic changes
can be promoted by tDCS, two recent studies have investigated
the value of combining repeated sessions of anodal tDCS of the left
temporal cortex with sound therapy (tailor-made notched music
training) (Teismann et al., 2014) or hearing aids (Shekhawat et al.,
2013a). However, both studies did not show any add-on effect of
tDCS to the audiological treatment. Two recent studies (Forogh
et al., 2016; Hyvärinen et al., 2016) were also negative. Forogh
et al. (2016) reported the absence of efficacy of 5 sessions of active
anodal tDCS of the left temporal cortex on tinnitus severity in 11
patients. In the study of Hyvärinen et al. (2016), two different mon-
tages were compared, either anodal tDCS of the left temporal cortex
(10 patients) or a bifrontal montage with the anode on the left and
the cathode on the right side (9 patients), while 11 patients received
sham stimulation. These authors found no difference between
active and sham groups in the effect of 10 sessions of tDCS on tin-
nitus severity, tDCS being applied on consecutive days as at-home
treatment. Therefore, according to these replicated negative results,
we can conclude that there is a level of evidence B in favour of the
probable absence of efficacy of anodal tDCS of the left temporo-
parietal cortex to relieve chronic tinnitus.

Other studies were designed to target the DLPFC. The rationale
of DLPFC stimulation for tinnitus relief was based on neuroimaging
studies showing the involvement of frontal areas in tinnitus patho-
physiology (Vanneste and De Ridder, 2011; Joos et al., 2012), as
well as on studies reporting clinical benefits of tDCS of the DLPFC
in the treatment of major depression, which is a frequent comorbid
disorder in tinnitus (Langguth et al., 2011). In a first open-labelled
exploratory study (Vanneste et al., 2010), single sessions of tDCS
were delivered at 1.5 mA for 20 min with the cathode over the left
DLPFC (F3) and the anode over the right DLPFC (F4) (438 patients).
This tDCS protocol led to a 30% suppressive effect of the tinnitus
percept. Conversely, the reverse montage (left anode and right
cathode) was assessed in 30 patients, but did not produce any
tinnitus-suppressing effect. Several retrospective or not-
controlled single-session studies of the same group further con-
firmed the value of bihemispheric DLPFC stimulation with left
cathode and right anode for providing some tinnitus relief
(Vanneste et al., 2011, 2013a,b). One study showed that bihemi-
spheric DLPFC stimulation using tDCS could modulate tinnitus
annoyance and loudness, whereas alpha-modulated tACS does
not yield a similar result (Vanneste et al., 2013b). An EEG study
of functional brain connectivity (coherence and phase synchro-
nization assessment) showed that the responders to bihemispheric
DLPFC tDCS differed from non-responders according to their rest-
ing brain activity in the right auditory cortex and parahippocampal
area and the functional connectivity between DLPFC and the sub-
genual anterior cingulate cortex in particular (Vanneste et al.,
2011). In an open-label study including 32 patients receiving 6 ses-
sions of bihemispheric DLPFC tDCS with the cathode over the left
DLPFC and the anode over the right DLPFC (1.5 mA, 30 min, 2 ses-
sions per week), a small clinical effect on both tinnitus loudness
and discomfort was also reported, particularly in women (Frank
et al., 2012). However, in a randomized double-blind, sham-
controlled study, Faber et al. (2012) found a beneficial effect on tin-
nitus annoyance (but not a reduction in tinnitus intensity) of ano-
dal tDCS applied for six sessions either to the right DLPFC (7
patients) or to the left DLPFC (8 patients), with the cathode placed
over the contralateral DLPFC. The effect of anodal tDCS of the
DLPFC on tinnitus was irrespective of the laterality of the anode,
whereas depression was preferentially modulated by left DLPFC
anodal tDCS and anxiety by right DLPFC anodal tDCS. Thus, the
results reported in the literature remain too preliminary to make
a recommendation regarding the potential efficacy of any tDCS
protocol targeted to the DLPFC for reducing either tinnitus discom-
fort or loudness in patients with chronic tinnitus.

Finally, we have to mention some studies using original mon-
tages, different from usually performed bipolar tDCS. First, an
open-labelled study including 27 patients with chronic tinnitus
(>2 years) (Shekhawat et al., 2016) showed that a single session
of tDCS with multipolar Laplacian montage centered on either
the temporal cortex or the DLPFC of the left hemisphere was
equally effective for suppressing tinnitus loudness and annoyance,
compared to classical bipolar montage, when the stimulation was
applied at 2 mA for 20 min. Second, in a large parallel-arm sham-
controlled study (Pal et al., 2015), 42 patients (21 in the active
group and 21 in the sham group) received 5 daily sessions of tDCS
(2 mA, 20 min, 1 week) with one large anode placed over the pre-
frontal cortices (F3-Fz-F4) and two smaller cathodes placed bilater-
ally over the temporal auditory cortical areas (T3 + T4). No
difference in the effect of tDCS on tinnitus handicap inventory,
severity scale, hospital anxiety and depression scale, and tinnitus
intensity and distress was observed between the active and the
sham groups from the end of the intervention up to 3 months later.

In summary, tDCS effects on tinnitus are not straightforward,
depend on the methods and montages used, and have not been
replicated by independent groups in large sham-controlled trials
comprising multiple daily sessions. A further next step might be
the evaluation of tRNS applied bilaterally over the auditory cor-
tices, which was shown to be superior to tDCS in reducing tinnitus
distress and loudness in one single-session study (Vanneste et al.,
2013a). A recently published study of tRNS of the auditory cortices
in 154 patients with non-pulsatile tinnitus showed differential
effects of tRNS on various tinnitus features according to stimula-
tion frequency (Joos et al., 2015). While either low-frequency
(0.1–100 Hz) or high-frequency (100–640 Hz) tRNS produced ben-
eficial effects, the combination of both frequencies was not able to
improve tinnitus. Finally, the considerable variety of design
options (tDCS, tACS and tRNS), electrode montages, stimulation
parameters, or frequency range concerning tACS and tRNS, opens
up an unlimited amount of neuromodulation possibilities that
could create a chaotic wealth of data.
13. Depression

The rationale for the use of tDCS in the treatment of depressive
disorders is based on the knowledge of functional and structural
abnormalities in the left and right dorsolateral and ventromedial
prefrontal cortex, amygdala and hippocampus in depressed
patients (Campbell et al., 2004; Hamilton et al., 2008; Koenigs
and Grafman, 2009). The aim of the NIBS techniques is to normal-
ize the interhemispheric imbalance of neuronal activity between
the both DLPFC areas, which was highlighted in this condition
by, e.g., EEG analyses (Reid et al., 1998; Debener et al., 2000). The
same rationale led to the development of rTMS therapy applied
to the DLPFC, with a definite or probable evidence of antidepres-
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sant efficacy, for high-frequency rTMS of the left DLPFC or low-
frequency rTMS of the right DLPFC, respectively (Lefaucheur
et al., 2014).

Regarding tDCS, the current approach is to enhance neural
activity in the left DLPFC with anodal stimulation and/or to reduce
neural activity in the right DLPFC with cathodal stimulation
(Brunoni et al., 2012). Neuroimaging and computer modeling stud-
ies of tDCS suggest that in fact, tDCS also largely affects deeper
brain structures, such as amygdala, hippocampus, and subgenual
cortex (Keeser et al., 2011a,b; Bikson et al., 2012; Peña-Gómez
et al., 2012). However, it is still unknown what changes in resting
state brain networks are responsible for the antidepressant efficacy
of tDCS. According to the various montages used, the respective
impact of each electrode on brain network modulation also
remains unclear.

A PubMed search (keywords: tDCS AND depression) identified
287 papers, including 39 original clinical studies and 988 patients,
partially redundant (ancillary studies of the SELECT-tDCS trial for
example). The Table 8 presents the results obtained in sham-
controlled studies including at least 10 patients receiving repeated
Table 8
Repeated tDCS session protocols in depression.

Articles Number and type of patients (protocol
design)

Stimulation
electrode location

S
s
n
(
u

Anodal tDCS of the left DLPFC with right orbitofrontal cathode
Boggio et al.

(2008a)
40 patients (non-medicated MDD) (21
active DLPFC, 9 active occipital, 10 sham)

Anode: left DLPFC
(F3) or occipital
cortex (Oz).
Cathode: right
orbitofrontal region

2
(

Loo et al.,
2010

34 patients (MDD, including 20 non-
medicated, MADRS >20) (19 active, 15
sham)

Anode: left DLPFC
(F3). Cathode: right
orbitofrontal region

1
s
f
s
1

Loo et al.
(2012)

60 patients (MDD, including 17 non-
medicated and 8 bipolars, MADRS >20) (31
active, 29 sham)

Anode: left DLPFC
(F3). Cathode: right
orbitofrontal region
(F8)

2
s
f
s
1

Palm et al.
(2012)

22 patients (drug-resistant MDD, including
2 bipolars) (crossover)

Anode: left DLPFC
(F3). Cathode: right
orbitofrontal region

1
s

Bennabi
et al.
(2015)

23 patients (drug-resistant MDD, no
bipolar, MADRS > 25) (12 active, 11 sham)

Anode: left DLPFC
(F3). Cathode: right
orbitofrontal region
(FP2)

2
(

Recommendation: anodal tDCS of the left DLPFC with right orbitofrontal cathode is pro
B) and probably ineffective in patients with drug-resistant major depressive episo

Anodal tDCS of the left DLPFC with right DLPFC cathode
Blumberger

et al.
(2012)

24 patients (drug-resistant MMD, HDRS-17
>21) (13 active, 11 sham)

Anode: left DLPFC
(F3). Cathode: right
DLPFC (F4)

2
(

Brunoni
et al.
(2013b)

103 patients (non-medicated MMD, very
few drug-resistant, no bipolar, HDRS-17
>17) (27 active + Sertraline, 26 active
+ placebo, 24 sham + Sertraline, 26 sham
+ placebo)

Anode: left DLPFC
(F3). Cathode: right
DLPFC (F4)

2
(
a
(

Brunoni
et al.
(2014a)

37 patients (non-medicated MDD, no
bipolar, HDRS-24 >21) (20 active, 17 sham;
combined with cognitive control therapy)

Anode: left DLPFC
(F3). Cathode: right
DLPFC (F4)

2
(

No recommendation for anodal tDCS of the left DLPFC with right DLPFC cathode in pati
BDI: Beck Depression Inventory; DLPFC: dorsolateral prefrontal cortex; FU: follow-up; H
rating scale; MDD: major depressive disorder.
daily sessions of active anodal tDCS of the left DLPFC, according to
the two main montages, with the cathode over the right orbito-
frontal cortex or the right DLPFC.
13.1. Antidepressant effects

The antidepressant effect of anodal tDCS of the left DLPFC was
first described by Fregni et al. (2006b,c). Since then, more than
10 sham-controlled RCTs were published in this context (Fregni
et al., 2006b,c; Boggio et al., 2007, 2008a; Rigonatti et al., 2008;
Loo et al., 2010, 2012; Blumberger et al., 2012; Palm et al., 2012;
Brunoni et al., 2013b), as well as various open-labelled studies
and case reports. While RCTs investigated the therapeutic effects
of tDCS in various patient samples (e.g., drug-resistant depression,
unipolar versus bipolar depression) with different aims (add-on-
treatment, comparison to pharmacotherapy, long-term treatment,
comparison of different stimulation settings), the case reports are
rather dealing with side-effects of tDCS (e.g., induction of
hypomania).
timulation intensity,
ession duration, total
umber of sessions
protocol duration; follow-
p)

Clinical results Class

mA, 20 min, 10 sessions
2 weeks; FU: 30 days)

Mood improvement (HDRS, BDI) after
active vs. sham tDCS of the left DLPFC

II

mA, 20 min, 5 active or
ham sessions (1.5 week),
ollowed by 5 active
essions (1.5 week; FU:
month)

No difference in mood improvement
(HDRS-17, MADRS) after active vs. sham
tDCS

II

mA, 20 min, 15 active or
ham sessions (3 weeks),
ollowed by 15 active
essions (3 weeks; FU:
month)

Mood improvement (MADRS) after active
vs. sham tDCS, but no difference in
responder rate (13%)

I

–2 mA, 20 min, 10
essions (2 weeks; no FU)

No difference in mood improvement
(HDRS-24) after active vs. sham tDCS, but a
better efficacy for the first study phase of
the crossover trial and an increase in
positive emotions after active tDCS

II

mA, 30 min, 10 sessions
1 week; FU: 30 days)

No difference in mood improvement
(HDRS, MADRS), responder rate, or changes
in neuropsychological tests after active vs.
sham tDCS

II

bably effective in patients with no drug-resistant major depressive episode (Level
de (Level B)

mA, 20 min, 15 sessions
3 weeks; FU: 1 month)

No significant difference between active
and sham tDCS.

II

mA, 30 min, 10 sessions
2 weeks), followed by 2
dditional sessions
4 weeks; FU: 6 month)

Greater mood improvement (MADRS,
HDRS-17, BDI) after active tDCS + sertraline
compared to all other groups. Active tDCS
only was significantly superior to placebo,
but no difference between active tDCS and
sertraline taken solely.

I

mA, 30 min, 10 sessions
2 weeks; FU: 2 weeks)

Greater mood improvement (HDRS-21,
BDI) after active vs. sham tDCS only in older
patients and those who presented better
performance in the cognitive task

III

ents with depression.
DRS: Hamilton Depression Rating Scale; MADRS: Montgomery-Åsberg depression



76 J.-P. Lefaucheur et al. / Clinical Neurophysiology 128 (2017) 56–92
Early studies used 20-min sessions of 1 mA anodal stimulation
over the left DLPFC, the cathode being placed over the right
supraorbital region (Fregni et al., 2006b,c). More recent trials sup-
port the use of longer sessions (30 min) of tDCS delivered at higher
intensity (2 mA) with the cathode placed over the right DLPFC
(Brunoni et al., 2013b; Valiengo et al., 2013). However, it remains
to demonstrate that increasing the duration and intensity of stim-
ulation necessarily leads to improve the therapeutic efficacy and to
prolong the after-effects.

Since 2011, the antidepressant efficacy of tDCS was appraised in
various meta-analyses, with the response and remission rates as
primary and second outcome measures, including the calculation
of effect sizes. In these works, an antidepressant response was usu-
ally defined as a 50% reduction in post-treatment scores on the
Hamilton Depression Rating Scale (HDRS) or the Montgomery–
Asberg Depression Rating Scale (MADRS). In the first meta-
analyses, active tDCS showed no or only modest superiority com-
pared to the sham condition (Kalu et al., 2012; Berlim et al.,
2013), because of the small sample size of the included studies, a
high degree of treatment resistance in at least two studies
(Blumberger et al., 2012; Palm et al., 2012), or the use of tDCS as
an add-on treatment to various antidepressants, leading to a ceil-
ing effect. Furthermore, concomitant administration of mood stabi-
lizers, benzodiazepines, or antiepileptics can influence tDCS-
mediated effects on cortical excitability and theoretically might
have reduced its therapeutic impact. More recent meta-analyses
(Shiozawa et al., 2014; Meron et al., 2015) and an analysis of indi-
vidual patient data (Brunoni et al., 2016a), including the large
SELECT-TDCS trial conducted by Brunoni et al. (2013b), suggest
superiority of active tDCS compared to sham treatment. In the
SELECT-TDCS trial, the combination of tDCS with sertraline
hydrochloride (50 mg/day) was superior to each treatment consid-
ered solely or to placebo, suggesting an additive interaction of tDCS
and antidepressant pharmacotherapy. The effect of tDCS may be
mediated by pharmacological modulation of serotonergic and
noradrenergic neurons located in deep brain structures, although
they are not directly affected by the superficial current flow gener-
ated by tDCS (Brunoni et al., 2014b). Alternatively, or additionally,
serotonergic enhancement might boost the neuroplastic effects of
anodal tDCS, thus resulting in synergistic effects (Nitsche et al.,
2009b; Kuo et al., 2016).

Three studies have investigated the efficacy of long-term
antidepressant treatment using tDCS (Dell’Osso et al., 2013;
Martin et al., 2013; Valiengo et al., 2013). In a small series of 11
patients who completed a 3-month follow-up beyond a 10-day
tDCS protocol, Dell’Osso et al. (2013) found that 45% of the patients
were still responders at the last time point. The other studies
reported a higher relapse rate when the repetition of the sessions
was reduced from weekly to biweekly (Martin et al., 2013;
Valiengo et al., 2013) or when the degree of treatment resistance
was higher at the beginning of tDCS therapy (Valiengo et al.,
2013). Other tDCS studies dealing with special issues, e.g., the
influence of various biomarkers (brain-derived neurotrophic factor
or cytokines), the augmentation effect with D-cycloserine adminis-
tration, or the treatment of depression associated with human
immunodeficiency virus infection or in the hemodialysis setting
will be not reported here.

In conclusion, we have to distinguish between protocols using a
cathode placed over the right orbitofrontal cortex and those using
a cathode over the right DLPFC. Although the target electrode
(anode) is placed over the left DLPFC in all cases, the tDCS current
flow (electric field) through brain structures as well as the related
network effects probably differs between the two montages. With
the right orbitofrontal cathode, there is a sufficient amount of evi-
dence (one positive class I and one positive class II studies issued
from two independent groups) to make a recommendation for a
level of evidence B regarding the antidepressant efficacy of anodal
tDCS of the left DLPFC on the basis of at least 10 daily sessions
(2 mA, 20–30 min) in medicated or drug-free patients with major
depressive disorder and no drug-treatment resistance. Conversely,
there is also a sufficient amount of evidence (two negative class II
studies issued from two independent groups) to make a recom-
mendation for a level of evidence B regarding the absence of effi-
cacy of the same tDCS protocol in patients with drug-resistant
depression. Concerning tDCS montage with the anode over the left
DLPFC and the cathode over the right DLPFC, no recommendation
can be made because of insufficient level of evidence from data
published by independent groups (two positive class I-II studies
issued from the same group with very few cases of drug-
resistant depression and one negative class II study from another
group including patients with only drug-resistant depression).
13.2. Cognitive effects

Improvement of working memory, learning, and long-term
memory by tDCS has been shown in various studies performed in
healthy subjects (Kuo and Nitsche, 2012). In contrast, only few
therapeutic studies report a specific assessment of the cognitive
impact of tDCS in patients, including patients treated for depres-
sion. Improvement of working memory in depressed patients trea-
ted by tDCS was reported by Fregni et al. (2006c) using the digit-
span test and by Boggio et al. (2007) using a go/no-go task. In stud-
ies with primary neuropsychological focus, anodal tDCS of the left
DLPFC was found to improve working memory in depressed sub-
jects (Oliveira et al., 2013; Wolkenstein and Plewnia, 2013) and
to modify negative emotion processing in the emotional stroop
task (Brunoni et al., 2014d). One study showed, however, that
bifrontal tDCS reduced implicit learning in depressed subjects
(Brunoni et al., 2013c). Improvement of cognition was also men-
tioned in single cases of tDCS-treated patients (Palm et al., 2009;
Bueno et al., 2011). Conversely, other studies reported no signifi-
cant cognitive changes induced by tDCS in depressed patients
(Ferrucci et al., 2009; Loo et al., 2010, 2012; Martin et al., 2011;
Palm et al., 2012). Finally, one study showed that the combination
of cognitive control training (a new type of cognitive therapy) and
tDCS has an augmenting effect on the improvement of depression
(Segrave et al., 2014).

Concerning the impact of tDCS on cognitive symptoms of
patients with major depression, a beneficial effect was reported
in four class II studies, whereas one class I study and three class
II studies were negative. In particular, two positive and one nega-
tive study emerged from the same SELECT-TDCS trial. Therefore,
current data remain conflicting and no recommendation can be
made for the use of tDCS of the DLPFC to improve cognitive symp-
toms in depressed patients. This conclusion is shared by an article
recently published on this topic (Brunoni et al., 2016b).
14. Schizophrenia

Despite advances in psychopharmacology, the majority of trea-
ted patients with schizophrenia retain disabling symptoms. The
most frequent drug-resistant symptoms are auditory verbal hallu-
cinations (AVH) and various negative symptoms (e.g., avolition,
alogia, or emotional withdrawal). Neuroimaging and neurophysio-
logical studies have highlighted that these refractory symptoms
may be linked to a fronto-temporal dysconnectivity. Negative
symptoms and AVH have been related to a reduced brain activity
in the right and left DLPFCs, while hyperactivity in the left
temporo-parietal region is especially observed in patients with
AVH. Using the concept of excitatory anodal stimulation versus
inhibitory cathodal stimulation, it was hypothesized that anodal



Table 9
Repeated tDCS session protocols in schizophrenia.

Articles Number and
type of patients
(protocol
design)

Stimulation electrode location Stimulation intensity,
session duration, total
number of sessions
(protocol duration;
follow-up)

Clinical results Class

Anodal tDCS of the left DLPFC with left temporo-parietal cathode
Brunelin et al.

(2012a)
30 patients with
AVH (15 active,
15 sham)

Anode: left DLPFC (between F3 and
FP1). Cathode: left temporo-parietal
junction (between T3 and P3)

2 mA, 20 min, 10 sessions
(1 week; FU: 3 months)

Greater AVH reduction (mean (AHRS): �31%
vs. �8%) after active vs. sham tDCS, remaining
significant up to 3 months. Improvement of
other schizophrenia symptoms, including
negative symptoms (PANSS) after active vs.
sham tDCS

II

Fitzgerald et al.
(2014)

24 patients (11
bilateral, 13
unilateral)

Anode: left DLPFC (F3). Cathode: left
temporo-parietal junction (TP3)
(unilaterally or bilaterally F3 + F4/TP3
+ TP4)

2 mA, 20 min, 15 sessions
(3 weeks; no FU)

No difference in any schizophrenia symptoms
(including AVH and negative symptoms) after
active vs. sham tDCS at the end of the
intervention

III

Mondino et al.
(2015)

28 patients with
AVH (15 active,
13 sham)

Anode: left DLPFC (between F3 and
FP1). Cathode: left temporo-parietal
junction (between T3 and P3)

2 mA, 20 min, 10 sessions
(1 week; no FU)

Greater AVH frequency reduction (mean:
�46% vs. +7.5%) after active vs. sham tDCS.
Reduction in AVH frequency correlated with
improvement in source monitoring
performances (decrease of externalization
bias)

II

Fröhlich et al.
(2016)

26 patients with
AVH (13 active,
13 sham)

3-electrode montage. Anode: left DLPFC
(between F3 and FP1). Cathode: left
temporo-parietal junction (between T3
and P3). Return reference: Cz

2 mA, 20 min, 5 sessions
(1 week; no FU)

No difference in AVH reduction, (mean
(AHRS): �24% vs. �34%) after active vs. sham
tDCS. No effect on other symptoms

II

Mondino et al.
(2016)

23 patients with
AVH (11 active,
12 sham)

Anode: left DLPFC (between F3 and
FP1). Cathode: left temporo-parietal
junction (between T3 and P3)

2 mA, 20 min, 10 sessions
(1 week; no FU)

Greater AVH reduction (mean (AHRS): �28%
vs. �10%) after active vs. sham tDCS,
correlated with a reduction of functional
connectivity between the left temporo-
parietal junction and anterior insula

II

No recommendation for anodal tDCS of the left DLPFC with left temporo-parietal cathode in schizophrenia

Anodal tDCS of the left DLPFC with right supraorbital cathode
Smith et al. (2015) 29 patients who

were cigarette
smokers (14
active, 15 sham)

Anode: left DLPFC (F3). Cathode: right
supraorbital (Fp2)

2 mA, 20 min, 5 sessions
(1 week; no FU)

Improvement in various scores of the
MATRICS Consensus Cognitive Battery after
active vs. sham tDCS, but no difference in
PANSS scores, AVH, and cigarette craving
between the two conditions

II

Palm et al. (2016b) 20 patients with
negative
symptoms (10
active, 10 sham)

Anode: left DLPFC (F3). Cathode: right
supraorbital (Fp2-Af8)

2 mA, 20 min, 10 sessions
(2 weeks; FU: 2 weeks)

Reduction of SANS and PANSS total scores
after active vs. sham tDCS

II

No recommendation for anodal tDCS of the left DLPFC with right supraorbital cathode in schizophrenia.
AHRS: auditory hallucinations rating scale; AVH: auditory verbal hallucinations; DLPFC: dorsolateral prefrontal cortex; FU: follow-up; PANSS: positive and negative
symptoms scale; SANS: Scale for the Assessment of Negative Symptoms.
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tDCS of the left DLPFC (hypoactive) combined with cathodal tDCS
of the left temporo-parietal junction (hyperactive) should alleviate
negative symptoms and AVH in patients with schizophrenia
(Brunelin et al., 2012b; Mondino et al., 2014). In the same way,
bilateral tDCS delivered to both prefrontal regions (left anode plus
right cathode) should alleviate negative symptoms.

A PubMed search (keywords: tDCS AND schizophrenia) identi-
fied 116 papers, including 38 original clinical studies and 384
patients. Among these 38 papers, there were 19 case reports and
19 clinical studies with different tDCS protocols applied on sam-
ples of patients with various symptoms and group sizes. In fact,
for the present study, we retained only 7 sham-controlled RCTs
including at least 10 patients who received repeated daily sessions
of active tDCS with the anode placed over the left DLPFC (between
F3 and FP1 according to the International 10–20 system of EEG
electrode placement) (Brunelin et al., 2012a; Fitzgerald et al.,
2014; Mondino et al., 2015, 2016; Smith et al., 2015; Fröhlich
et al., 2016; Palm et al., 2016b). In two of these studies, the cathode
was placed on the right supraorbital region (Smith et al., 2015;
Palm et al., 2016b) and they will be detailed later. In the remaining
5 studies, the cathode was placed over the left temporo-parietal
junction (mid-point between T3 and P3) and the effects of this
bipolar montage over a large fronto-temporo-parietal region of
the left hemisphere were assessed on various positive or negative
symptoms of schizophrenia (Table 9).

Among these 5 studies, one double-blind sham-controlled RCT
showed a significant reduction of AVHs following active tDCS com-
pared to sham condition (Brunelin et al., 2012a). The protocol con-
sisted of 10 daily sessions of tDCS (2 mA, 20 min) over two
consecutive weeks. Clinical improvement was significant on per-
sistent AVHs, but also on both negative and positive dimensions,
assessed on the total positive and negative symptoms scale
(PANSS) as a secondary outcome. The same group showed in partly
overlapping samples that the reduction in AVHs following this type
of tDCS protocol correlated with an improvement in source-
monitoring performance (Mondino et al., 2015) and with a reduc-
tion of functional connectivity between the left temporo-parietal
junction and anterior insula (Mondino et al., 2016). In contrast, lit-
tle is known on the ability of this approach to improve cognitive
functions, such as spatial working memory or speech processing,
which are altered in patients with schizophrenia. A double-blind
sham-controlled feasibility study confirmed the safety of this
intervention in a series of 12 young patients with childhood-
onset schizophrenia (Mattai et al., 2011). However, two replication
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studies, including one comprising two small RCTs (unilateral and
bilateral tDCS), and published by independent groups failed to
demonstrate any clinically relevant effect of active vs. sham tDCS
using this montage on AVHs and negative symptoms at the end
of the intervention based on 15 tDCS sessions over three weeks
(Fitzgerald et al., 2014) or 5 tDCS sessions over one week
(Fröhlich et al., 2016). However, these studies suffered from vari-
ous weaknesses, including small sample size, leaving room for fur-
ther replication studies or large multicentric RCTs using multiple-
session tDCS treatment in schizophrenic patients with the anode
over the left DLPFC and the cathode over the left temporo-
parietal cortex. Meanwhile, we cannot make any recommendation
about the efficacy of this montage to relieve schizophrenia symp-
toms, either positive or negative.

Other studies used a different electrode montage, with the
anode still placed over the left DLPFC, but the cathode placed over
the right supraorbital region. Using this montage, some beneficial
results were reported in patient cases concerning the relief of neg-
ative symptoms of schizophrenia (Palm et al., 2013b) or catatonia
(Shiozawa et al., 2013). In two controlled studies using this mon-
tage (Smith et al., 2015; Nienow et al., 2016), the cognitive impair-
ment and deficits associated with schizophrenia were assessed,
while schizophrenia symptoms were secondary outcomes or not
assessed. These studies showed the positive effects on cognition
of repeated sessions of anodal tDCS of the left DLPFC performed
prior or during cognitive training. In the first study, with a
parallel-arm design, 29 patients (14 in the active group and 15 in
the sham group) received 5 sessions of anodal tDCS (2 mA,
20 min) of the left DLPFC (with right supraorbital cathode) over
one week (Smith et al., 2015). A significant cognitive improvement
was observed at the end of the intervention after active vs. sham
tDCS in composite, working memory and attention-vigilance
scores of the MATRICS Consensus Cognitive Battery. However,
there were no differences between the two tDCS conditions regard-
ing the PANSS scores (including AVH and negative symptoms) and
cigarette smoking or craving. A single-blind, sham-controlled,
proof-of-concept study also addressed cognitive issues in 10 schi-
zophrenic patients receiving 28 sessions (two sessions each week)
of tDCS combined with cognitive training (Nienow et al., 2016) The
6 patients who received active stimulation with the anode over the
left DLPFC and the cathode over the contralateral supraorbital area
showed significant more improvement on word or picture 2-back
tasks compared to the 4 patients who received sham stimulation.
However, schizophrenia symptoms were not assessed. Conversely,
the most recent study using this montage had the Scale for the
Assessment of Negative Symptoms (SANS) as the primary outcome
measure (Palm et al., 2016b). This double-blind sham-controlled
study with parallel-arm design (10 patients per arm) showed a sig-
nificant reduction of 36% of negative symptoms on SANS after 10
active stimulations compared to a reduction of 0.7% in the sham
group. As secondary outcome, PANSS sum scores also decreased
significantly more after active (�23.4%) than sham stimulation
(�2.2%). However, the results of the two sham-controlled studies
using this montage (Smith et al., 2015; Palm et al., 2016b) being
conflicting (Table 9), no recommendation can be made for the
use of anodal tDCS of the left DLPFC with a contralateral orbito-
frontal cathode in schizophrenia, even regarding cognitive deficits.

Finally, some results were reported in this domain, still with the
anode over the left DLPFC but with other cathode placements. For
example, with the cathode placed over the right DLFPC (bihemi-
spheric DLPFC stimulation), a small RCT, including 15 patients
and specifically addressing the treatment of negative symptoms,
showed a significant decrease in PANSS total score and negative
subscale after active stimulation compared to sham condition
(Gomes et al., 2015). Using a cathode placed over the right deltoid
muscle, an open-label study of 9 patients with negative symptoms
also found an improvement of 24% in the PANSS negative subscale
after anodal tDCS of the left DLPFC (Kurimori et al., 2015). The
results obtained with these montages, non-replicated yet, cannot
be considered for making recommendation.
15. Substance abuse, addiction and craving

Addiction to substances such as alcohol, drugs, nicotine, or food,
is a major health issue, because of the difficulty to achieve a per-
manent cure with a high rate of relapses, despite detoxification
and pharmacological or psychological interventions (Fant et al.,
2009; Heinz et al., 2009). The rationale of using tDCS as a treatment
for substance addiction and craving is that the DLPFC, which plays
a major role in top-down inhibitory control mechanisms and
reward mechanisms, was claimed to be dysfunctional in these dis-
orders (Goldstein and Volkow, 2002; Wilson et al., 2004).

A PubMed search (keywords: tDCS AND addiction OR craving)
identified 80 papers, including 32 original clinical studies and
583 subjects. No safety problems emerged in these studies. There
were 19 studies including at least 10 patients, but mostly based
on single tDCS sessions with immediate or short-term assessment.
In fact, we only identified 4 sham-controlled studies with at least
10 patients who received repeated daily sessions of the same type
of active tDCS, i.e. a bihemispheric stimulation of the DLPFC with
the anode on the right (F4) and the cathode on the left hemisphere
(F3) (Boggio et al., 2009b; Fecteau et al., 2014; Klauss et al., 2014;
Batista et al., 2015) (Table 10). The analyzed results cover patients
addicted to alcohol, cocaine, crack, or smoking. All these studies
were positive regarding the effect of active tDCS, either in the
resulting quality of life (Klauss et al., 2014; Batista et al., 2015)
or in craving scores (Boggio et al., 2009b; Fecteau et al., 2014;
Batista et al., 2015). According to these four positive class II studies
issued from two independent teams, we can make a recommenda-
tion for a level of evidence B regarding the efficacy of bihemi-
spheric tDCS of the DLPFC (right anode + left cathode) to reduce
craving in patients with various types of addiction. However, this
statement must be tempered by the fact that studies concerning
alcohol abuse, crack-cocaine abuse, and smoking were pooled
together, with results obtained on different outcome variables.
Nevertheless we want to keep this statement, since a common
mechanism of action certainly underlies all the results obtained
with this given montage in patients who all have an addiction. This
conclusion is reinforced by a recent neurophysiological and neu-
roimaging study showing that abstinence provided by bihemi-
spheric tDCS of the DLPFC using this specific montage (right
anode + left cathode) could involve functional changes in the ven-
tral medial prefrontal cortex in both alcoholics and crack-cocaine
users (Nakamura-Palacios et al., 2016).

It is interesting to note that this montage is similar to the one
proposed in the treatment of tinnitus, but opposed to the one pro-
posed in the treatment of depression (anodal tDCS of the left DLPFC
with right DLPFC cathode) (see previous chapters). In fact, as afore-
mentioned, Faber et al. (2012) found a beneficial effect on tinnitus
regardless of the direction of the montage between the two hem-
isheres, but tinnitus-associated depression was preferentially
relieved by placing the anode over the left DLPFC, whereas anxiety
was preferentially relieved by placing the anode over the right
DLPFC.

Actually, in alcoholics, one study showed a reduction of craving
for visual alcohol cues after a single session of active bihemispheric
tDCS of the DLPFC, similarly for a right anode + left cathode mon-
tage and a left anode + right cathode montage (Boggio et al.,
2008b). Conversely, the same team showed that only the right



Table 10
Repeated tDCS session protocols in addiction/craving.

Articles Number and
type of patients
(protocol
design)

Stimulation
electrode
location

Stimulation intensity, session
duration, total number of
sessions (protocol duration;
follow-up)

Clinical results Class

Alcohol
Klauss et al. (2014) 33 alcoholics

(16 active, 17
sham)

Anode: right
DLPFC (F4).
Cathode: left
DLPFC (F3)

2 mA, 2 � 13 min (separated by
a 20-min rest interval
without stimulation), 5 sessions
(1 week; FU: 6 months)

Improvement in overall perception of quality of life after
active vs. sham tDCS, but no difference in craving scores,
frontal function, global mental status, and anxiety-
depression symptoms. At 6 months, alcohol-abstinent
subjects were more numerous after active vs. sham tDCS
(8/16 vs/ 2/17)

II

Crack-Cocaine
Batista et al. (2015) 36 crack-

cocaine users
(17 active, 19
sham)

Anode: right
DLPFC (F4).
Cathode: left
DLPFC (F3)

2 mA, 20 min, 5 sessions
(3 weeks; FU: 1 week)

Improvement in craving scores, anxiety, and overall
perception of quality of life after active vs. sham tDCS. In
addition, craving scores decreased linearly over 4 weeks

II

Smoking
Boggio et al. (2009b) 27 smokers (13

active, 14
sham)

Anode: right
DLPFC (F4).
Cathode: left
DLPFC (F3)

2 mA, 20 min, 5 sessions
(1 week; no FU)

Decrease in the number of cigarettes smoked after active
vs. sham tDCS in the week of intervention. In addition,
cumulative reduction of craving for cue-provoked smoking
after active tDCS

II

Fecteau et al. (2014) 12 smokers
(crossover)

Anode: right
DLPFC (F4).
Cathode: left
DLPFC (F3)

2 mA, 30 min, 5 sessions
(1 week; FU: 4 days)

Decrease in the number of cigarettes smoked after active
vs. sham tDCS, lasting up to 4 days after the end of the
intervention. Smokers rejected more often offers of
cigarettes with reward sensitive effects after active tDCS

II

Recommendation: combined anodal tDCS of the right DLPFC and cathodal tDCS of the left DLPFC is probably effective in addiction/craving (Level B).
DLPFC: dorsolateral prefrontal cortex; FU: follow-up.
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anode + left cathode montage was significantly associated with a
reduction of craving for marijuana, while both montages increased
the propensity for risk-taking in chronic marijuana users (Boggio
et al., 2010). Other working groups interestingly found that only
the right anode + left cathode montage was specifically able to
reduce the risk-taking behavior in 18 dependent cocaine users
(Gorini et al., 2014) and 18 cigarette smokers (Pripfl et al., 2013).
This right anode + left cathode montage, applied in single or multi-
ple tDCS sessions (2 mA, 20 min, 5 days for one week) was found to
positively impact cognitive processing related to crack-related
visual cues in 13 crack-cocaine users (Conti and Nakamura-
Palacios, 2014). Pripfl and Lamm (2015) also showed that a single
session of bihemispheric tDCS of the DLPFC with the right anode
+ left cathode montage (and not the reverse montage) could reduce
negative affect in emotion appraisal but not modulate nicotine
craving-cue appraisal in 20 smokers. Finally, Kekic et al. (2014)
reported that a single tDCS session with the right anode + left cath-
ode montage over the DLPFC improved craving scores for sweet but
not savoury foods in 17 patients with food craving. The partici-
pants that exhibited more reflective choice behaviour were more
susceptible to the anti-craving effects of tDCS than those that dis-
played more impulsive choice behaviour. However, no difference
in food consumption was observed after active vs. sham tDCS. Con-
versely, one week of daily anodal tDCS delivered to the right DLPFC
(but with the cathode placed in the left supraorbital region) was
found to reduce overall caloric intake by 14% in comparison with
sham stimulation in 14 subjects, which however do not meet the
criteria of eating disorder (Jauch-Chara et al., 2014).

Other studies used a tDCS montage with the anode over the left
DLPFC and a cathode over the contralateral supraorbital or shoul-
der region. Using this montage, a transient improvement on clini-
cal and electrophysiological features of craving was observed in
alcoholics after a single active tDCS session (Nakamura-Palacios
et al., 2012; den Uyl et al., 2015) or a series of 5 sessions (once a
week for five consecutive weeks) (da Silva et al., 2013). In smokers,
anodal stimulation of the left DLPFC with cathode placed over the
contralateral supraorbital region was found to reduce the negative
affect correlated with nicotine dependence without any change on
cigarette craving in one single-session study (Xu et al., 2013) or to
improve the ability to resist smoking in another single-session
study (Falcone et al., 2016). Obviously, these results are still too
preliminary to make any recommendation for the use of anodal
tDCS of the left DLPFC with the cathode over the right orbitofrontal
region in craving. Finally, the reverse tDCS montage, with the
anode over the right DLPFC and the cathode over the left supraor-
bital region, was recently shown to be able to reduce food craving
(Ljubisavljevic et al., 2016). A single session could produce imme-
diate effects, while the clinical improvement could last for a month
after a 5-day protocol. These results remain to be replicated.
16. Other psychiatric disorders

Regarding clinical applications of tDCS in psychiatric disorders
other than depression, schizophrenia and addiction, there are only
very limited data available in the literature. A PubMed search (key-
words: tDCS AND obsessive compulsive disorder) identified 17
papers, including 5 original clinical studies and 12 patients. There
were 4 single case reports and only one open-label study per-
formed on 8 patients with the cathode placed over the left orbito-
frontal cortex and the anode placed over the right cerebellum
(Bation et al., 2016). A PubMed search (keywords: tDCS AND
post-traumatic stress disorder) identified 5 papers, including only
one pilot study of 4 patients (Saunders et al., 2015). A PubMed
search (keywords: tDCS AND autism) identified 36 papers, includ-
ing 6 original clinical studies and 64 patients. Among these 6
papers, there were 2 single case reports and 2 RCTs issued from
the same team assessing the effect of either a 5-day protocol on
clinical scores or a single session on EEG parameters in a series
of 20 patients (Amatachaya et al., 2014, 2015). The montage used
was an anode placed over the left DLPFC (F3) with a cathode on
the right shoulder. Finally, a PubMed search (keywords: tDCS
AND attention-deficit hyperactivity disorder) identified 24 papers,
including 2 original clinical studies (single-session studies) and 80
patients. One study (60 patients) did not find significant differ-
ences between active and sham tDCS regarding the effect of



80 J.-P. Lefaucheur et al. / Clinical Neurophysiology 128 (2017) 56–92
bihemispheric tDCS of the DLFPC (left anode + right cathode) on
behavioral performance in go/no-go tasks (Cosmo et al., 2015).
Conversely, the other study (20 patients) showed that anodal tDCS
of the left DLPFC (with right supraorbital cathode) increased the
proportion of correct responses in go/no-go tasks, whereas catho-
dal tDCS of the left DLPFC increased the inhibition accuracy
(Soltaninejad et al., 2016). Obviously, reported results are too pre-
liminary to make any recommendation for the use of tDCS in all
these psychiatric conditions.
17. At-home do-it-yourself DCS and neural enhancement

One of the main advantages of tDCS as a therapeutic device is to
be a low-cost, small-size, and patient-wearable equipment. Also, it
allows distribution of machines for home use, which is not the case
for rTMS. Although therapeutic effects may last beyond the time of
stimulation when using NIBS techniques because of neural plastic-
ity processes, the treatment of a chronic disease always requires
repeated sessions in a maintenance protocol. Considering rTMS,
this is resulting in multiple trips and visits for the patient to be
stimulated, generating fatigue and costs, and reducing compliance.
Considering tDCS, at-home application is feasible and potentially
more comfortable and less tiring for the patient. At-home tDCS tri-
als have been already reported as case reports for the treatment of
AVH (Andrade, 2013) or chronic myofascial pain (Pérez-Borrego
et al., 2014), series of patients with trigeminal neuralgia
(Hagenacker et al., 2014) or tinnitus (Hyvärinen et al., 2016), or
are currently under investigation in patients with chronic pain
(O’Neill et al., 2015) or MS (Kasschau et al., 2015). One group also
used tDCS as an add-on intervention combined with physical ther-
apy to promote motor recovery in patients impaired by intracere-
bral hemorrhage (Mortensen et al., 2016). Recommendations have
even been recently proposed for a safe use of remotely-supervised
at-home tDCS (Charvet et al., 2015), highlighting training of the
user or caregiver, medical supervision, monitoring of compliance,
and assessment of the clinical benefit or side-effects. However,
an uncontrolled domiciliary utilization of tDCS devices exposes
the patient to potential adverse events caused by misuse or over-
use, e.g., skin burns (Wang et al., 2015) or unnecessary or danger-
ous repetition of the sessions.

Because of the wide diffusion of tDCS or tDCS-like machines
that can be bought freely on the internet, it will be difficult to
restrict the use of these machines and ensure correct application.
This also refers to the topic of ‘‘neuroenhancement”, which is how-
ever beyond the scope of this present work, as it relates to improv-
ing the capacities of normal subjects and not to treat pathological
conditions. In this context of free access to technology, neuroen-
hancement by tDCS is the subject of many ethical and regulatory
debates (Hamilton et al., 2011; Cohen Kadosh et al., 2012;
Heinrichs, 2012; Santarnecchi et al., 2013; Cabrera et al., 2014;
Fitz and Reiner, 2015; Maslen et al., 2015; Wexler, 2016) and sci-
entific controversies. In fact, theoretically, tDCS may have the
capacity to ‘‘enhance” attention, learning, endurance, motor execu-
tion, memory, or other higher-order processes such as decision-
making, risk-taking, or problem-solving (Levasseur-Moreau et al.,
2013; Brem et al., 2014; Coffman et al., 2014). However, tDCS
experts’ opinions are not unequivocal on this topic, as shown by
two recent surveys (Shirota et al., 2014; Riggall et al., 2015). In fact,
modifying neural activity by NIBS does not always go in the
expected direction in a ‘‘normal” human brain. For example, one
study showed that the improvement of cognitive performance by
testing repetition was reduced in healthy subjects after a single
session of active tDCS over the DLPFC (bilateral or unilateral anodal
stimulation with the cathode placed at Cz) compared to the sham
procedure (Sellers et al., 2015). Specifically, the reduction in
test–retest improvement was observed on the Full Scale Intelli-
gence Quotient and the Perceptual Reasoning Index of the Wech-
sler Adult Intelligence Scale. Another study showed that the
accuracy performance in a working memory task was significantly
decreased during and after a single session of tDCS over the DLPFC
using a commercial tDCS machine that is freely available on the
internet as a cognitive enhancer (Steenbergen et al., 2016). There-
fore, there is a need for maintaining a level of technical and scien-
tific excellence and considering regulatory issues to not discredit
this therapeutic perspective. In this context, the International Fed-
eration of Clinical Neurophysiology (IFCN) recently warns against
the use of DIY devices and methods of NIBS unless they have
shown both efficacy and safety (see recommandation in the follow-
ing document: http://www.ifcn.info/uploadfiles/documents/2015/
Using_tES_devices_as_DIY_FINAL_13Dec15.pdf).
18. Perspectives of targets other than cortical (cerebellum and
spinal cord)

Although this work is intended to be a guideline on the indica-
tions of tDCS applied to the cerebral cortex, readers should be
informed that research currently develops to explore the possibil-
ity of using transcutaneous DC stimulation on other neural targets,
such as cerebellum and spinal cord, in order to promote functional
neural changes (Priori et al., 2014). This issue will be briefly
addressed.
18.1. Cerebellar tDCS

Because the cerebellum plays a major role in several brain func-
tions, cerebellar stimulation could be a preferential way of thera-
peutic intervention in many pathological conditions. Weak DC
delivered transcutaneously in humans over the cerebellum for
minutes elicits prolonged changes in neurophysiological and beha-
vioural responses related to cerebellar functions (Ferrucci and
Priori, 2013; Grimaldi et al., 2014a). Theoretical considerations
and modelling studies suggest that the electric field generated by
tDCS can reach the cerebellumwhen using an appropriate montage
(Parazzini et al., 2014b). The induced effects arise from functional
changes in the stimulated cerebellum, although transynaptic or
antidromic changes may also occur in connected cerebral or brain-
stem structures.

There is already reported evidence that cerebellar tDCS can
induce neurophysiological, functional, and clinical effects related
to DC-induced neuroplasticity and neurotransmitter changes
(Ferrucci et al., 2015; Grimaldi et al., 2016). For example, cerebellar
tDCS was found to influence cerebello-thalamo-cortical inhibitory
projections (Galea et al., 2009), human associative plasticity
assessed by the paired-associative stimulation paradigm
(Hamada et al., 2012), somatosensory mismatch negativity (Chen
et al., 2014) conditioned eyeblink responses (Zuchowski et al.,
2014), gait adaptation (Jayaram et al., 2012), motor learning
(Galea et al., 2012; Dutta et al., 2014; Hardwick and Celnik,
2014; Herzfeld et al., 2014), and cognitive functions, such as mem-
ory and emotion (Ferrucci et al., 2008b, 2012, 2013; Boehringer
et al., 2012; Pope and Miall, 2012; Macher et al., 2014). These
results have been obtained in healthy humans and could have clin-
ical interest, especially in patients with disorders involving cere-
bellar dysfunction such as ataxia, Parkinson’s disease, autism and
schizophrenia (Yeganeh-Doost et al., 2011; Massaquoi, 2012; Wu
and Hallett, 2013).

There are only preliminary data of the application of cerebellar
tDCS in patients (Grimaldi and Manto, 2013; Bradnam et al., 2014,
2015; Gironell et al., 2014; Grimaldi et al., 2014b; Minichino et al.,
2014, 2015; Sadnicka et al., 2014; Benussi et al., 2015; Bation et al.,

http://www.ifcn.info/uploadfiles/documents/2015/Using_tES_devices_as_DIY_FINAL_13Dec15.pdf
http://www.ifcn.info/uploadfiles/documents/2015/Using_tES_devices_as_DIY_FINAL_13Dec15.pdf
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2016; Ferrucci et al., 2016). Much work remains to be done to
design further therapeutic studies using cerebellar tDCS, according
to the parameters of stimulation (electrode montage, polarity), the
possible mechanisms of action, and the underlying pathological
conditions and interactions with ongoing drug treatments.
18.2. Transcutaneous spinal direct current stimulation

Invasive high-frequency epidural electrical spinal cord stimula-
tion (SCS) has been used for more than 30 years to treat a variety of
pain syndromes (Grabow et al., 2003; Mailis-Gagnon et al., 2004;
Frey et al., 2009). Involving totally different mechanisms of action,
a noninvasive approach of spinal cord neuromodulation was
recently developed, using transcutaneous DC stimulation in
humans (Cogiamanian et al., 2008, 2012).

The application of anodal DC at the thoracic level (2.5 mA for
15 min with the cathode placed at the right shoulder) selectively
reduced the amplitude of the cervicomedullary P30 component
of the somatosensory evoked potentials to posterior tibial nerve
stimulation (Cogiamanian et al., 2008) as well as laser evoked
potentials after foot stimulation (Truini et al., 2011) or nociceptive
withdrawal reflex (Cogiamanian et al., 2011; Perrotta et al., 2016).
These results provide evidence that transcutaneous spinal direct
current stimulation (tsDCS) is able to interfere with spinal cord
conduction properties and to modulate conduction in the lemnis-
cal and spino-thalamic pathways. At present, there is also increas-
ing evidence that tsDCS is able to induce persisting changes in
properties of spinal sensory or motor neurons (Winkler et al.,
2010; Lim and Shin, 2011; Lamy et al., 2012; Hubli et al., 2013;
Niérat et al., 2014). The resulting excitability changes induced by
tsDCS may also extent to corticospinal tracts or even intracortical
circuits (Bocci et al., 2015a,b,c).

To date, the precise mechanisms underlying these neuromodu-
latory effects remain speculative, although one modelling study
improves the understanding of the spatial distribution of the cur-
rent density generated by tsDCS (Parazzini et al., 2014a). Neverthe-
less the possibility of influencing conduction along the ascending
spinal pathway as well as spinal circuitries is vghgfhgngpain syn-
drome, e.g., restless leg syndrome (Heide et al., 2014) and the neu-
rorehabilitation of motor disorders, especially spasticity or
poststroke gait impairment (Picelli et al., 2015).
19. Perspectives of treatment by transcranial electrical
stimulation methods other than tDCS (tACS, tRNS)

Although the present work addresses tDCS results, we should
also mention that future developments with potential therapeutic
application might regard other non-invasive neuromodulation
techniques using low-intensity transcranial electrical stimulation.
We briefly present these other techniques, namely tACS and tRNS,
which are for now the subject of relatively few clinical studies.
Taking into account all physical possibilities, an indefinite number
of transcranial electrical stimulation protocols exists. Rather arbi-
trarily determinded protocols have been tried over the last century,
mainly deriving from the Franco-Russian experience of ‘‘elec-
trosleep” or ‘‘electroanesthesia” (Guleyupoglu et al., 2013). Most
of the complex historical stimulation protocols are proprietary
commercial ‘‘blends” and will probably not survive the test of time
against physically simpler and better evaluated protocols such as
tDCS or sinusoidal tACS (Paulus, 2011). In case of tDCS, first clinical
descriptions date as early as 1801, one year after the invention of
the voltaic pile. An earlier attempt of modulating slow EEG oscilla-
tions by tACS was performed during sleep, but tACS was applied
with tDCS overlay, leaving until today unclear whether the DC or
the AC component provided the resulting effect (Marshall et al.,
2006). Then, the first investigation with pure sinusoidal motor cor-
tex tACS delivered at 10 Hz produced only small aftereffects on
implicit motor learning (Antal et al., 2008). This was probably
due to the low intensity of stimulation (0.4 mA), which was choo-
sen to avoid retinal phosphenes via the frontal return electrode.
Since a couple of years, tACS was applied in disease context, first
in movement disorders (Angelakis et al., 2013) and tinnitus
(Vanneste et al., 2013a,b), and more recently to modulate tremor
by targeting the cerebellum (Mehta et al., 2014).

Two different goals have to be differentiated when looking at
tACS effects, first regarding entrainment with ongoing brain
rhythm and second regarding induction of aftereffects. In the con-
text of the present review, the latter seems to be the most interest-
ing since this would avoid wearing the stimulation electrode all
day for therapeutic purposes. The problem of the necessity for con-
tinuous stimulation was pointed out by a closed-loop tACS
approach using specified phase alignments to suppress parkinso-
nian tremor by about 50% (Brittain et al., 2013). This is also a
requirement for the application of alternating fields at very high
intensity and frequency for therapeutic purpose in a disease justi-
fying substantial efforts for treatment, namely the treatment of
glioblastoma (Swanson et al., 2016). The upper frequency limit of
tACS has not yet been determined and it touches e.g. the question
if mobile phone emission can influence brain function. In fact, con-
tinuous tACS at 200 kHz could selectively destroy dividing cells by
targeting the inhomogeneous fields present at the bridge separat-
ing the daughter cells that interfere with spindle tubulin orienta-
tion and induce dielectrophoresis (Kirson et al., 2007).
Conversely, the role of tACS frequencies in the low kHz range
remains to be investigated. A first study showed that 2 and 5 kHz
tACS protocols were particularly efficacious in inducing a sustained
increase in MEP amplitude up to 30–60 min after the intervention
(Chaieb et al., 2011). Within this frequency, tACS appears too fast
to entrain brain circuit oscillations, and therefore the stimulation
probably directly interferes with cortical excitability via neuronal
membrane activation changes.

A protocol of 140 Hz tACS delivered at 1 mA for 10 min can pro-
duce aftereffects comparable in duration to those induced by ano-
dal tDCS (Moliadze et al., 2010). This frequency complies with the
so-called ‘‘ripple frequency”, which has a function in encoding
memory in the hippocampus. Interestingly it is about the same fre-
quency which was empirically found to be optimally suited for DBS
therapeutical effects in movement disorders (130 Hz). In the con-
text of tACS, stimulation intensity plays a critical role to promote
either excitation or inhibition of the neural circuits (Moliadze
et al., 2012) and not electrode polarity as for tDCS. A deeper under-
standing is requested to determine how electrode size, shape, or
montage, as well as stimulation frequency and intensity
(Moliadze et al., 2012) and the initial state of the brain and its sus-
ceptibility to resonance effects (Feurra et al., 2013) may interfere in
a complex manner in the emergence of tACS effects beyond the
simple process of oscillation entrainment or spiking resonance
(Reato et al., 2013; Schmidt et al., 2014).

Although motor cortex excitability parameters assessed by
TMS, e.g., motor threshold or MEP size measurement, provides
widely used biomarkers, their value in predicting behavioural
changes induced by tACS remains highly speculative. For example,
140 Hz tACS was very efficient in influencing MEP size, whereas
implicit motor learning was rather facilitated by 250 Hz tACS
(Moliadze et al., 2010). Frequency-specific effects can be circum-
vented by performing tRNS, which was introduced by Terney
et al. (2008) as a novel method of transcranial electrical stimula-
tion. However, a random noise spectrum using frequencies ranging
from 100 to 640 Hz led essentially to the same results as 140 Hz
tACS or anodal tDCS, i.e. a consistent increase in motor cortex
excitability (Terney et al., 2008). In fact, tRNS may provide larger
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MEP size increase and anodal tDCS longer MEP size increase com-
pared to sham, suggesting different underlying mechanisms of
action (Moliadze et al., 2014). As tACS, tRNS was also applied in
disease context since a couple of years, to provide ‘‘therapeutic”
improvement, such as the relief of neuropathic pain (Alm and
Dreimanis, 2013; Palm et al., 2016a), psychiatric symptoms
(Palm et al., 2013a; Haesebaert et al., 2014), or tinnintus
(Vanneste et al., 2013a,b; Claes et al., 2014; Joos et al., 2015). These
reported clinical effects should be specifically assessed, but largely
remain preliminary before being replicated by independent groups
in sham-controlled studies.

20. Summary of recommendations

This work presents for the first time a comprehensive evidence-
based analysis of the reported clinical efficacy of various tDCS
montages that could lead to therapeutic applications in the neuro-
logical, otorhinolaryngological, and psychiatric domains. According
to this synthesis, there is a sufficient level of evidence to make rec-
ommendations for the efficacy of specific tDCS montages in several
clinical indications, as summarized in Table 11.

To date, a Level A recommendation has not been achieved so far
for any clinical indication. In contrast, a Level B recommendation
(probable efficacy) is conferred for the clinical effect of: (i) anodal
tDCS of the left M1 (defined as C3 location in the International 10–
20 system of EEG electrode placement) with the cathode over the
right orbitofrontal region in fibromyalgia; (ii) anodal tDCS of the
left DLPFC (F3) with the cathode over the right orbitofrontal region
in non-drug-resistant major depressive episodes; (iii) anodal tDCS
of the right DLPFC with the cathode over the left DLPFC in addic-
tion/craving, although this statement covers different clinical con-
ditions and outcome variables. A Level C recommendation
(possible efficacy) is conferred for the clinical effect of anodal tDCS
of the motor cortex of the left hemisphere or contralateral to pain
side with the cathode over the right orbitofrontal region in patients
Table 11
Summary of recommendations on tDCS efficacy according to clinical indication.

Chronic neuropathic pain of the lower limbs due
to spinal cord lesion

Anodal tDCS of left M1 (or contral
recommendation in case of periph

Chronic non-neuropathic oral, facial, low back,
abdominal, or pelvic pain

No recommendation for anodal tD

Fibromyalgia Anodal tDCS of left M1 is probabl
Migraine No recommendation for anodal tD
Postoperative pain No recommendation for anodal tD
Parkinson’s disease (motor symptoms) No recommendation for anodal tD
Parkinson’s disease (cognitive symptoms) No recommendation for anodal tD
Dystonia (focal or generalized) No recommendation for anodal or
Motor stroke No recommendation for anodal tD

No recommendation for cathodal
No recommendation for bihemisp
chronic stage

Nonfluent poststroke aphasia No recommendation for anodal tD
homologous region in postacute o

Multiple sclerosis (fatigue or cognitive disorders) No recommendation for anodal tD
Multiple sclerosis (sensory or motor symptoms) No recommendation for anodal tD
Epilepsy No recommendation for cathodal
Disorders of consciousness No recommendation for anodal tD
Alzheimer’s disease No recommendation for anodal tD
Tinnitus Anodal tDCS of the left temporop

No recommendation for bihemisp
Depression Anodal tDCS of the left DLPFC wit

depression (Level B) and probably
No recommendation for bihemisp

Schizophrenia (AVH or negative symptoms) No recommendation for anodal tD
Addiction/craving Bihemispheric tDCS of the DLPFC

drugs, smoking) (Level B)
No recommendation for anodal tD

‘‘No recommendation” means the absence of sufficient evidence to date, but not the evi
with chronic neuropathic pain at the lower limbs secondary to
traumatic or medical spinal cord lesion.

Conversely, a Level B recommendation (probable inefficacy) is
conferred for the absence of clinical effect of: (i) anodal tDCS of
the left temporal cortex (between C3 and T3/T5) with the cathode
over the right orbitofrontal region in chronic tinnitus; (ii) anodal
tDCS of the left DLPFC (F3) with the cathode over the right orbito-
frontal region in drug-resistant major depression. Finally, in clini-
cal conditions where no recommendation was proposed, it must
be underlined that the absence of evidence should not be taken
as evidence for the absence of effect.

Further controlled studies in all potential therapeutical indica-
tions are obviously needed to extend and confirm the present rec-
ommendations. The term ‘‘recommendation” used in this work
should not be misinterpreted. Our objective was to ‘‘recommend”
a type of tDCS protocol in a given clinical situation according to
the level of evidence of its ‘‘real” efficacy, comparing active vs.
sham condition. Our methodology was not that of a meta-
analysis using all data published in a statistical way, but was based
on the existence of results replicated by independent teams on a
representative sample of patients who received multiple sessions
of active stimulation. For example, the beneficial results provided
by a given tDCS protocol in a specific indication but only reported
by one team and not replicated by independent teams did not lead
to a recommendation, whereas such results might have a signifi-
cant weight in a meta-analysis. In addition, a high level of evidence
of efficacy (comparing active vs. sham condition) should not open
the door to clinical use in daily routine practice without any limi-
tations. The first of these limitations is to precisely design the tDCS
protocol to apply, especially in terms of session duration and rep-
etition or combined therapy. Our work was intended to present
evidence-based guidelines, not practical guidelines to codify the
daily use of tDCS therapy. The second limitation is the fact that a
‘‘significant” effect of active stimulation compared to sham control
may be statistically relevant but not clinically meaningful in daily
ateral to pain side) is possibly effective in case of spinal cord lesion (Level C). No
eral nervous system lesion
CS of left M1 (or contralateral to pain side)

y effective (Level B)
CS of the left M1 or cathodal tDCS of V1
CS of M1 or the left DLPFC
CS of the motor cortex
CS of the left DLPFC
cathodal tDCS of the motor cortex
CS of the ipsilesional motor cortex in acute, postacute, or chronic stage
tDCS of the contralesional motor cortex in postacute stage
heric tDCS of the motor cortex (ipsilesional anode + contralesional cathode) in

CS of left Broca’s area or Wernicke’s area or cathodal tDCS of their right
r chronic stage
CS of sensory or motor cortex or the left DLPFC
CS of M1
tDCS of the epileptic focus or anodal tDCS of the left DLPFC
CS of the left DLPFC
CS of the left DLPFC or the temporoparietal cortex
arietal cortex is probably ineffective (Level B)
heric tDCS of the DLPFC (right anode + left cathode)
h right orbitofrontal cathode is probably effective in non-drug-resistant major
ineffective in drug-resistant major depression (Level B)
heric tDCS of the DLPFC (left anode + right cathode)
CS of the left DLPFC with left temporoparietal or right supraorbital cathode
(right anode + left cathode) is probably effective in addiction/craving (alcohol,

CS of the left DLPFC with right supraorbital cathode

dence for an absence of effect.
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living or in terms of quality of life. Therefore, it remains to be
determined how to optimize tDCS protocols and techniques to give
them ‘‘therapeutic relevance” in routine clinical practice. The
safety profile of tDCS is very high, as far as explored, with regard
to the currently applied protocols (Bikson et al., 2016). Adverse
effects are limited to mild headache or local sensory discomfort
(Poreisz et al., 2007; Brunoni et al., 2011; McFadden et al., 2011;
Kessler et al., 2012). In practice, the main issue is to avoid local skin
burns by limiting excessive current density according to electrode
size and shape, keeping a good homogeneous contact between the
electrodes and the skin using gel, cream, or appropriately large,
wet electrodes (Loo et al., 2011; Palm et al., 2014b). In this context,
technical guidelines have been recently proposed by a group of
experts to ensure a proper use of tDCS protocols (Woods et al.,
2016).

Our work has other limitations. First, our literature search strat-
egy was based on only one database (PubMed), but this is one of
the main international databases of references on life sciences
and biomedical topics. In addition, the research was conducted
by experts in the field. Therefore, it is unlikely that original pub-
lished data of importance can miss in this work. More importantly,
we cannot rule out the impact of publication bias on our analysis,
which corresponds to the fact that trials with statistically signifi-
cant beneficial results are most likely to be submitted and pub-
lished than trials with ‘‘negative” or non-significant results. This
is a well known problem for any conclusion reported in literature
reviews or meta-analyses based only on published studies, which
should be considered with caution, even when analysis methods
seem very stringent (Easterbrook et al., 1991). Finally, it is impor-
tant to underline that our analysis was based on arbitrary criteria
regarding the number of patients receiving active treatment
needed to be included (P25 in a class I study and P10 in a class
II study), which could be considered relatively small to people out-
side of this field of research. The results of the analyses and there-
fore the recommendations would have changed if the number of
patients receiving active treatment needed to be included was
set at a higher value (e.g., P15–20 patients in the ‘‘active” arm
rather than P10 patients), mostly because few studies would
exceed this cutoff. However, the main interest and justifcation of
the method used in this work are to be identical to the previously
published recommendations for therapeutic use of rTMS
(Lefaucheur et al., 2014) and thus allowing comparisons.

We must be aware of the existence of current technical devel-
opments, focussing on new designs of electrode montages, shapes
or sizes, resulting in new ‘‘geometries” of electric field distribution
within the brain (Saturnino et al., 2015), or on combined
approaches with neuroimaging (e.g., fiber tracking) and high-
resolution EEG to improve targeting. Such developments, as well
as a better characterization of stimulation intensity, duration,
and session repetition requirements, may help to reduce the large
interindividual variability in tDCS efficacy that currently renders
the average clinical responses rather modest. The use of tDCS
should also be considered as an adjunctive therapy in combination
with medication or non-pharmacological therapy, with the aim of
improving or accelerating the efficacy of these treatments. How-
ever, various applications of tDCS in combined protocols with con-
comitant interventions showed no additional impact of tDCS,
possibly due to a ceiling effect, as shown for the combination of
tDCS and robot-assisted training in motor rehabilitation of stroke
patients (Geroin et al., 2011; Hesse et al., 2011; Triccas et al.,
2015). Furthermore, different drug treatments may even reduce
tDCS efficacy, leading to a worse outcome compared to unmedi-
cated patients, as shown for the use of benzodiazepines in
depressed patients treated by 5 tDCS sessions, with the anode over
the left DLPFC and the cathode over the right DLPFC (Brunoni et al.,
2013a).
To conclude, there are pros and cons for the different NIBS tech-
niques, such as tDCS and rTMS, applicable in clinical conditions.
The respective place of these techniques remains to be determined
in the available armamentarium and the decision tree for the treat-
ment of neuropsychiatric diseases. However, it is likely that the
indications of NIBS techniques will increasingly develop in routine
clinical practice in the future, mostly due to their excellent ratio
between benefit and risk. These guidelines pave the way for the
therapeutic application of tDCS by showing already acquired evi-
dence of efficacy of this technique in the current literature.
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